Fragmentation by crack branching

被引:33
作者
Astrom, J
Timonen, J
机构
[1] Department of Physics, University of Jyväskylä, Jyväskylä, FIN-40351
关键词
D O I
10.1103/PhysRevLett.78.3677
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional lattice models of crack branching give rise to fragmentation if disorder is introduced in the model. The resulting fragment-size distribution is analyzed within a simple analytical model and by numerical simulations. The analytical model gives, under rather general conditions, a power-law distribution over the entire size range. In the specific case studied, the exponent ranges from -infinity to -0.5, depending on the stopping probability of cracks. The analytical results are consistent with the numerical simulations.
引用
收藏
页码:3677 / 3680
页数:4
相关论文
共 16 条
[1]  
ABRAHAM F, 1994, PHYS REV LETT, V73, P271
[2]   Dynamic fragmentation of a two-dimensional brittle material with quenched disorder [J].
Astrom, J ;
Kellomaki, M ;
Timonen, J .
PHYSICAL REVIEW E, 1997, 55 (04) :4757-4761
[3]   Crack bifurcations in a strained lattice [J].
Astrom, J ;
Timonen, J .
PHYSICAL REVIEW B, 1996, 54 (14) :R9585-R9588
[4]   INSTABILITY IN DYNAMIC FRACTURE [J].
FINEBERG, J ;
GROSS, SP ;
MARDER, M ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1991, 67 (04) :457-460
[6]   ACOUSTIC EMISSIONS FROM RAPIDLY MOVING CRACKS [J].
GROSS, SP ;
FINEBERG, J ;
MARDER, M ;
MCCORMICK, WD ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1993, 71 (19) :3162-3165
[7]   SCALE-INVARIANT DISORDER IN FRACTURE AND RELATED BREAKDOWN PHENOMENA [J].
HANSEN, A ;
HINRICHSEN, EL ;
ROUX, S .
PHYSICAL REVIEW B, 1991, 43 (01) :665-678
[8]   Mesoscopic model of crack branching [J].
Heino, P ;
Kaski, K .
PHYSICAL REVIEW B, 1996, 54 (09) :6150-6154
[9]   DISCRETE MODELS FOR 2-DIMENSIONAL AND 3-DIMENSIONAL FRAGMENTATION [J].
HERNANDEZ, G ;
HERRMANN, HJ .
PHYSICA A, 1995, 215 (04) :420-430
[10]   Fragmentation of colliding discs [J].
Kun, F ;
Herrmann, HJ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1996, 7 (06) :837-855