Australian climate-carbon cycle feedback reduced by soil black carbon

被引:297
作者
Lehmann, Johannes [1 ]
Skjemstad, Jan [2 ]
Sohi, Saran [3 ]
Carter, John [4 ]
Barson, Michele [5 ]
Falloon, Pete [6 ]
Coleman, Kevin [3 ]
Woodbury, Peter [1 ]
Krull, Evelyn [2 ]
机构
[1] Cornell Univ, Coll Agr & Life Sci, Dept Crop & Soil Sci, Ithaca, NY 14853 USA
[2] CSIRO Land & Water, Glen Osmond, SA 5064, Australia
[3] Rothamsted Res, Harpenden AL5 2JQ, Herts, England
[4] Environm Protect Agcy, Queensland Climate Change Ctr Excellence, Indooroopilly, Qld 4068, Australia
[5] Dept Agr Fisheries & Forestry, Bureau Rural Sci, Lyneham, ACT 2602, Australia
[6] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/ngeo358
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together(1). Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils(2-5), creating a positive feedback(6-9). Current models of global climate change that recognize this soil carbon feedback are inaccurate if a larger fraction of soil organic carbon than postulated has a very slow decomposition rate. Here we show that by including realistic stocks of black carbon in prediction models, carbon dioxide emissions are reduced by 18.3 and 24.4% in two Australian savannah regions in response to a warming of 3 degrees C over 100 years(1). This reduction in temperature sensitivity, and thus the magnitude of the positive feedback, results from the long mean residence time of black carbon, which we estimate to be approximately 1,300 and 2,600 years, respectively. The inclusion of black carbon in climate models is likely to require spatially explicit information about its distribution, given that the black carbon content of soils ranged from 0 to 82% of soil organic carbon in a continental-scale analysis of Australia. We conclude that accurate information about the distribution of black carbon in soils is important for projections of future climate change.
引用
收藏
页码:832 / 835
页数:4
相关论文
共 29 条
[11]   Centennial black carbon turnover observed in a Russian steppe soil [J].
Hammes, K. ;
Torn, M. S. ;
Lapenas, A. G. ;
Schmidt, M. W. I. .
BIOGEOSCIENCES, 2008, 5 (05) :1339-1350
[12]   Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere [J].
Hammes, Karen ;
Schmidt, Michael W. I. ;
Smernik, Ronald J. ;
Currie, Lloyd A. ;
Ball, William P. ;
Nguyen, Thanh H. ;
Louchouarn, Patrick ;
Houel, Stephane ;
Gustafsson, Oerjan ;
Elmquist, Marie ;
Cornelissen, Gerard ;
Skjemstad, Jan O. ;
Masiello, Caroline A. ;
Song, Jianzhong ;
Peng, Ping'an ;
Mitra, Siddhartha ;
Dunn, Joshua C. ;
Hatcher, Patrick G. ;
Hockaday, William C. ;
Smith, Dwight M. ;
Hartkopf-Froeder, Christoph ;
Boehmer, Axel ;
Lueer, Burkhard ;
Huebert, Barry J. ;
Amelung, Wulf ;
Brodowski, Sonja ;
Huang, Lin ;
Zhang, Wendy ;
Gschwend, Philip M. ;
Flores-Cervantes, D. Xanat ;
largeau, ClauDe ;
Rouzaud, Jean-Noeel ;
Rumpel, Cornelia ;
Guggenberger, Georg ;
Kaiser, Klaus ;
Rodionov, Andrei ;
Gonzalez-Vila, Francisco J. ;
Gonzalez-Perez, Jose A. ;
de la Rosa, Jose M. ;
Manning, David A. C. ;
Lopez-Capel, Elisa ;
Ding, Luyi .
GLOBAL BIOGEOCHEMICAL CYCLES, 2007, 21 (03)
[13]   Terrestrial ecosystem carbon dynamics and climate feedbacks [J].
Heimann, Martin ;
Reichstein, Markus .
NATURE, 2008, 451 (7176) :289-292
[14]  
IPCC, 2022, Climate change 2001. Impacts, adaptation and vulnerability, DOI 10.1017/9781009325844
[15]   The prediction of soil carbon fractions using mid-infrared-partial least square analysis [J].
Janik, L. J. ;
Skjemstad, J. O. ;
Shepherd, K. D. ;
Spouncer, L. R. .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2007, 45 (02) :73-81
[16]   MODEL ESTIMATES OF CO2 EMISSIONS FROM SOIL IN RESPONSE TO GLOBAL WARMING [J].
JENKINSON, DS ;
ADAMS, DE ;
WILD, A .
NATURE, 1991, 351 (6324) :304-306
[17]   The vertical distribution of soil organic carbon and its relation to climate and vegetation [J].
Jobbágy, EG ;
Jackson, RB .
ECOLOGICAL APPLICATIONS, 2000, 10 (02) :423-436
[18]   Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil [J].
Jones, C ;
McConnell, C ;
Coleman, K ;
Cox, P ;
Falloon, P ;
Jenkinson, D ;
Powlson, D .
GLOBAL CHANGE BIOLOGY, 2005, 11 (01) :154-166
[19]   How does fire affect the nature and stability of soil organic nitrogen and carbon? A review [J].
Knicker, Heike .
BIOGEOCHEMISTRY, 2007, 85 (01) :91-118
[20]   Long-term sensitivity of soil carbon turnover to warming [J].
Knorr, W ;
Prentice, IC ;
House, JI ;
Holland, EA .
NATURE, 2005, 433 (7023) :298-301