Biorthogonal wavelet expansions

被引:89
作者
Dahmen, W [1 ]
Micchelli, CA [1 ]
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, DEPT MATH SCI, YORKTOWN HTS, NY 10598 USA
关键词
finitely generated shift-invariant spaces; stationary subdivision schemes; matrix refinement relations; biorthogonal wavelets;
D O I
10.1007/s003659900045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with developing conditions on a given finite collection of compactly supported algebraically linearly independent refinable functions that insure the existence of biorthogonal systems of refinable functions with similar properties. In particular, we address the close connection of this issue with stationary subdivision schemes.
引用
收藏
页码:293 / 328
页数:36
相关论文
共 35 条
[1]  
BUHMANN MD, 1994, P LOND MATH SOC, V69, P428
[2]   Local decomposition of refinable spaces and wavelets [J].
Carnicer, JM ;
Dahmen, W ;
Pena, JM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :127-153
[3]  
Cavaretta A.S., 1991, MEMOIRS AM MATH SOC, V93
[4]  
Chui C. K., 1994, Applied and Computational Harmonic Analysis, V1, P368, DOI 10.1006/acha.1994.1023
[5]   COMPACTLY SUPPORTED BIDIMENSIONAL WAVELET BASES WITH HEXAGONAL SYMMETRY [J].
COHEN, A ;
SCHLENKER, JM .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :209-236
[6]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]  
Cohen A., 1993, Revista Matematica Iberoamericana, V9, P51, DOI [10.4171/RMI/133, DOI 10.4171/RMI/133]
[8]   SMOOTH REFINABLE FUNCTIONS AND WAVELETS OBTAINED BY CONVOLUTION PRODUCTS [J].
DAHLKE, S ;
DAHMEN, W ;
LATOUR, V .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (01) :68-84
[9]   ON THE LOCAL LINEAR INDEPENDENCE OF TRANSLATES OF A BOX SPLINE [J].
DAHMEN, W ;
MICCHELLI, CA .
STUDIA MATHEMATICA, 1985, 82 (03) :243-263
[10]  
Dahmen W., 1984, Computer-Aided Geometric Design, V1, P115, DOI 10.1016/0167-8396(84)90025-6