Coalescence time for two genes from a subdivided population

被引:23
作者
Bahlo, M
Griffiths, RC
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Genet Bioinformat Grp, Parkville, Vic 3050, Australia
关键词
coalescence time; migration; subdivided population;
D O I
10.1007/s002850100104
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper a new form of the solution for the Laplace transform and moments of the distribution of the waiting time for two genes to coalescence is presented. The two genes are sampled from a subdivided population where migration rates between populations are constant in time. Equal subpopulation size is not assumed. For the special case of an island model with equal migration rates between islands, the Laplace transform of the coalescence time and the first and second moments are found explicitly. The new form of the solutions allows numerical calculation. The connection of how the results relate to a panmictic population when migration rates are large is illustrated using strong-migration-limit theory.
引用
收藏
页码:397 / 410
页数:14
相关论文
共 16 条
[1]   Inference from gene trees in a subdivided population [J].
Bahlo, M ;
Griffiths, RC .
THEORETICAL POPULATION BIOLOGY, 2000, 57 (02) :79-95
[2]  
Bellman R., 1970, INTRO MATRIX ANAL
[3]  
Herbots H. M., 1997, IMA VOLUMES MATH ITS, V87, P231
[4]  
HUDSON RR, 1991, OXF SURV EVOL BIOL, V7, P1
[5]  
Kingman J.F., 1982, Stochastic Process. Appl., V13, P235, DOI [DOI 10.1016/0304-4149(82)90011-4, 10.1016/0304-4149(82)90011-4]
[6]   Geographical invariance and the strong-migration limit in subdivided populations [J].
Nagylaki, T .
JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 41 (02) :123-142
[7]   THE STRONG-MIGRATION LIMIT IN GEOGRAPHICALLY STRUCTURED POPULATIONS [J].
NAGYLAKI, T .
JOURNAL OF MATHEMATICAL BIOLOGY, 1980, 9 (02) :101-114
[8]  
Nagylaki T, 1998, GENETICS, V149, P1599
[9]  
NOTOHARA M, 1993, J MATH BIOL, V31, P115
[10]  
NOTOHARA M, 1990, J MATH BIOL, V29, P59, DOI 10.1007/BF00173909