Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming -: A comparative study

被引:107
作者
Kurr, Patrick [1 ,2 ]
Kasatkin, Igor [2 ]
Girgsdies, Frank [2 ]
Trunschke, Annette [2 ]
Schloegl, Robert
Ressler, Thorsten [1 ]
机构
[1] Tech Univ Berlin, Inst Chem, D-10623 Berlin, Germany
[2] Max Planck Gesell, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany
关键词
methanol steam reforming; Cu/ZnO/Al2O3; catalyst; hydrogen production; homogeneous microstructure; Cu lattice strain; TPR; TEM; XRD; XAS; in situ;
D O I
10.1016/j.apcata.2008.06.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microstructural characteristics of various real Cu/ZnO/Al2O3 catalysts for methanol steam reforming (MSR) were investigated by in situ X-ray diffraction (XRD), in situ X-ray absorption spectroscopy (XAS), temperature programmed reduction (TPR) and electron microscopy (TEM). Structure-activity correlations of binary Cu/ZnO model catalysts were compared to microstructural properties of the ternary catalysts obtained from in situ experiments under MSR conditions. Similar to the binary system, in addition to a high specific copper surface area the catalytic activity of Cu/ZnO/Al2O3 catalysts is determined by defects in the bulk structure. The presence of lattice strain in the copper particles as the result of an advanced Cu-ZnO interface was detected only for the most active Cu/ZnO/Al2O3 catalyst in this study. Complementarily, a highly defect rich nature of both Cu and ZnO has been found in the short-range order structure (XAS). Conventional TPR and TEM investigations confirm a homogeneous microstructure of Cu and ZnO particles with a narrow particle size distribution. Conversely, a heterogeneous microstructure with large copper particles and a pronounced bimodal particle size distribution was identified for the less active catalysts. Apparently, lattice strain in the copper nanoparticles is an indicator for a homogeneous microstructure of superior Cu/ZnO/Al2O3 catalyst for methanol chemistry. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 59 条
[1]   Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 [J].
Agrell, J ;
Birgersson, H ;
Boutonnet, M ;
Melián-Cabrera, I ;
Navarro, RM ;
Fierro, JLG .
JOURNAL OF CATALYSIS, 2003, 219 (02) :389-403
[2]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[3]   Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates [J].
Bems, B ;
Schur, M ;
Dassenoy, A ;
Junkes, H ;
Herein, D ;
Schlögl, R .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :2039-2052
[4]  
Böttger I, 2000, CHEM-EUR J, V6, P1870
[5]   Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts [J].
Breen, JP ;
Ross, JRH .
CATALYSIS TODAY, 1999, 51 (3-4) :521-533
[6]  
BURCH R, 2000, J CHEM SOC FARADAY T, V86, P1990
[7]   THE MEASUREMENT OF COPPER SURFACE-AREAS BY REACTIVE FRONTAL CHROMATOGRAPHY [J].
CHINCHEN, GC ;
HAY, CM ;
VANDERVELL, HD ;
WAUGH, KC .
JOURNAL OF CATALYSIS, 1987, 103 (01) :79-86
[8]   SYNTHESIS OF METHANOL .1. CATALYSTS AND KINETICS [J].
CHINCHEN, GC ;
DENNY, PJ ;
JENNINGS, JR ;
SPENCER, MS ;
WAUGH, KC .
APPLIED CATALYSIS, 1988, 36 (1-2) :1-65
[9]   THE ACTIVITY AND STATE OF THE COPPER SURFACE IN METHANOL SYNTHESIS CATALYSTS [J].
CHINCHEN, GC ;
WAUGH, KC ;
WHAN, DA .
APPLIED CATALYSIS, 1986, 25 (1-2) :101-107
[10]   Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst [J].
Choi, Y ;
Stenger, HG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 38 (04) :259-269