Homing endonuclease structure and function

被引:336
作者
Stoddard, BL [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
关键词
D O I
10.1017/S0033583505004063
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Homing endonucleases are encoded by open reading frames that are embedded within group I. group II and archael introns, as well as inteins (intervening sequences that are spliced and excised post-translationally). These enzymes initiate transfer of those elements (and themselves) by generating strand breaks in cognate alleles that lack the intervening sequence, as well as in additional ectopic sites that broaden the range of intron and intein mobility. Homing endonucleases can be divided into several unique families that are remarkable in several respects: they display extremely high DNA-binding specificities which arise from long DNA target sites (14-40 bp), they are tolerant of a variety of sequence variations in these sites, and they display disparate DNA cleavage mechanisms. A significant number of homing endonucleases also act as maturases; (highly specific cofactors for the RNA splicing reactions of their cognate introns). Of the known homing group I endonuclease families, two (HNH and His-Cys box enzymes) appear to be diverged from a common ancestral nuclease. While crystal structures of several representatives of the LAGLIDADG endonuclease family have been determined, only structures of single members of the HNH (I-Hmul), His-Cys box (I-Ppol) and GlY-YlG (I-Tevl) families have been elucidated. These studies provide an important source of information for structure-function relationships in those families, and are the centerpiece of this review. Finally, homing endonucleases are significant targets for redesign and selection experiments, in hopes of generating novel DNA binding and cutting reagents for a variety of genomic applications.
引用
收藏
页码:49 / 95
页数:47
相关论文
共 198 条
[1]   Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI [J].
Aagaard, C ;
Awayez, MJ ;
Garrett, RA .
NUCLEIC ACIDS RESEARCH, 1997, 25 (08) :1523-1530
[2]   I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment [J].
Argast, GM ;
Stephens, KM ;
Emond, MJ ;
Monnat, RJ .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (03) :345-353
[3]   Kinetic and thermodynamic framework for assembly of the six-component bI3 group I intron ribonucleoprotein catalyst [J].
Bassi, GS ;
Weeks, KM .
BIOCHEMISTRY, 2003, 42 (33) :9980-9988
[4]   Recruitment of intron-encoded and co-opted proteins in splicing of the bI3 group I intron RNA [J].
Bassi, GS ;
de Oliveira, DM ;
White, MF ;
Weeks, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :128-133
[5]   PROKARYOTIC INTRONS AND INTEINS - A PANOPLY OF FORM AND FUNCTION [J].
BELFORT, M ;
REABAN, ME ;
COETZEE, T ;
DALGAARD, JZ .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :3897-3903
[6]   Mechanisms of intron mobility [J].
Belfort, M ;
Perlman, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30237-30240
[7]   Homing endonucleases: keeping the house in order [J].
Belfort, M ;
Roberts, RJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3379-3388
[8]   BACTERIOPHAGE INTRONS - PARASITES WITHIN PARASITES [J].
BELFORT, M .
TRENDS IN GENETICS, 1989, 5 (07) :209-213
[9]   Evaluation of the NIOSH draft method 5525 for determination of the total reactive isocyanate group (TRIG) for aliphatic isocyanates in autobody repair shops [J].
Bello, D ;
Streicher, RP ;
Woskie, SR .
JOURNAL OF ENVIRONMENTAL MONITORING, 2002, 4 (03) :351-360
[10]   INTRON MOBILITY IN PHAGE-T4 IS DEPENDENT UPON A DISTINCTIVE CLASS OF ENDONUCLEASES AND INDEPENDENT OF DNA-SEQUENCES ENCODING THE INTRON CORE - MECHANISTIC AND EVOLUTIONARY IMPLICATIONS [J].
BELLPEDERSEN, D ;
QUIRK, S ;
CLYMAN, J ;
BELFORT, M .
NUCLEIC ACIDS RESEARCH, 1990, 18 (13) :3763-3770