Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

被引:47
作者
Curran, SA [1 ]
Zhang, DH
Wondmagegn, WT
Ellis, AV
Cech, J
Roth, S
Carroll, DL
机构
[1] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA
[2] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA
[3] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA
[4] New Mexico State Univ, Dept Elect & Comp Engn, Las Cruces, NM 88003 USA
[5] Ind Res Ltd, Gracefield Res Ctr, Lower Hutt 6009, New Zealand
[6] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[7] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA
关键词
D O I
10.1557/JMR.2006.0129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Composite formation between carbon nanotubes and polymers can dramatically enhance the electrical and thermal properties of the combined materials. We have prepared a composite from polystyrene and multi-walled carbon nanotubes (MWCNT) and, unlike traditional techniques of composite formation, we chose to polymerize styrene from the surface of dithiocarboxylic ester-functionalized MWCNTs to fabricate a unique composite material, a new technique dubbed "gRAFT" polymerization. The thermal stability of the polymer matrix in the covalently linked MWCNT-polystyrene composite is significantly enhanced, as demonstrated by a 15 degrees C increase of the decomposition temperature than that of the noncovalently linked MWCNT-polystyrene blend. Thin films made from the composite with low MWCNT loadings (< 0.9 wt%) are optically transparent, and we see no evidence of aggregation of nanotubes in the thin film or solution. The result from the conductivity measurement as a function of MWCNT loadings suggests two charge transport mechanisms: charge hopping in low MWCNT loadings (0.02-0.6 wt%) and ballistic quantum conduction in high loadings (0.6-0.9 wt%). The composite exhibits dramatically enhanced conductivity up to 33 S m(-1) at a low MWCNT loading (0.9 wt%).
引用
收藏
页码:1071 / 1077
页数:7
相关论文
共 54 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE [J].
AJAYAN, PM ;
STEPHAN, O ;
COLLIEX, C ;
TRAUTH, D .
SCIENCE, 1994, 265 (5176) :1212-1214
[4]   Mechanical and electrical properties of a MWNT/epoxy composite [J].
Allaoui, A ;
Bai, S ;
Cheng, HM ;
Bai, JB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (15) :1993-1998
[5]   Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes [J].
Azamian, BR ;
Coleman, KS ;
Davis, JJ ;
Hanson, N ;
Green, MLH .
CHEMICAL COMMUNICATIONS, 2002, (04) :366-367
[6]   In situ quantum dot growth on multiwalled carbon nanotubes [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (34) :10342-10350
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J].
Blake, R ;
Gun'ko, YK ;
Coleman, J ;
Cadek, M ;
Fonseca, A ;
Nagy, JB ;
Blau, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10226-10227
[9]   TEMPERATURE-DEPENDENT RESISTIVITY AND CONDUCTIVITY MECHANISM IN CARBON PARTICLE-FILLED POLYMERS [J].
CARMONA, F ;
MOUNEY, C .
JOURNAL OF MATERIALS SCIENCE, 1992, 27 (05) :1322-1326
[10]   Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals [J].
Chaudhary, S ;
Kim, JH ;
Singh, KV ;
Ozkan, M .
NANO LETTERS, 2004, 4 (12) :2415-2419