Optical fiber nanowires and microwires: fabrication and applications

被引:300
作者
Brambilla, Gilberto [1 ]
Xu, Fei [1 ]
Horak, Peter [1 ]
Jung, Yongmin [1 ]
Koizumi, Fumihito [2 ]
Sessions, Neil P. [1 ]
Koukharenko, Elena [3 ]
Feng, Xian [1 ]
Murugan, Ganapathy S. [1 ]
Wilkinson, James S. [1 ]
Richardson, David J. [1 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] Asahi Glass Co Ltd, Kanagawa Ku, Yokohama, Kanagawa 2218755, Japan
[3] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
ADVANCES IN OPTICS AND PHOTONICS | 2009年 / 1卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
SUBWAVELENGTH-DIAMETER SILICA; MICROFIBER LOOP RESONATOR; WHISPERING-GALLERY MODES; PHOTONIC CRYSTAL FIBERS; SUPERCONTINUUM GENERATION; EVANESCENT FIELD; REFRACTIVE-INDEX; CARBON NANOTUBES; WAVE-GUIDE; REFRACTOMETRIC SENSORS;
D O I
10.1364/AOP.1.000107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microwires and nanowires have been manufactured by using a wide range of bottom-up techniques such as chemical or physical vapor deposition and top-down processes such as fiber drawing. Among these techniques, the manufacture of wires from optical fibers provides the longest, most uniform and robust nanowires. Critically, the small surface roughness and the high-homogeneity associated with optical fiber nanowires (OFNs) provide low optical loss and allow the use of nanowires for a wide range of new applications for communications, sensing, lasers, biology, and chemistry. OFNs offer a number of outstanding optical and mechanical properties, including (1) large evanescent fields, (2) high-nonlinearity, (3) strong confinement, and (4) low-loss interconnection to other optical fibers and fiberized components. OFNs are fabricated by adiabatically stretching optical fibers and thus preserve the original optical fiber dimensions at their input and output, allowing ready splicing to standard fibers. A review of the manufacture of OFNs is presented, with a particular emphasis on their applications. Three different groups of applications have been envisaged: (1) devices based on the strong confinement or nonlinearity, (2) applications exploiting the large evanescent field, and (3) devices involving the taper transition regions. The first group includes supercontinuum generators, a range of nonlinear optical devices, and optical trapping. The second group comprises knot, loop, and coil resonators and their applications, sensing and particle propulsion by optical pressure. Finally, mode filtering and mode conversion represent applications based on the taper transition regions. Among these groups of applications, devices exploiting the OFN-based resonators are possibly the most interesting; because of the large evanescent field, when OFNs are coiled onto themselves the mode propagating in the wire interferes with itself to give a resonator. In contrast with the majority of high-Q resonators manufactured by other means, the OFN microresonator does not have major issues with input-output coupling and presents a completely integrated fiberized solution. OFNs can be used to manufacture loop and coil resonators with Q factors that, although still far from the predicted value of 10(9), are well in excess of 10(5). The input-output pigtails play a major role in shaping the resonator response and can be used to maximize the Q factor over a wide range of coupling parameters. Finally, temporal stability and robustness issues are discussed, and a solution to optical degradation issues is presented.
引用
收藏
页码:107 / 161
页数:55
相关论文
共 156 条
[1]   Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system [J].
Adachi, M ;
Harada, T ;
Harada, M .
LANGMUIR, 1999, 15 (21) :7097-7100
[2]   Lithographically fabricated optical cavities for refractive index sensing [J].
Adams, M ;
DeRose, GA ;
Loncar, M ;
Scherer, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (06) :3168-3173
[3]   Helical polyacetylene synthesized with a chiral nematic reaction field [J].
Akagi, K ;
Piao, G ;
Kaneko, S ;
Sakamaki, K ;
Shirakawa, H ;
Kyotani, M .
SCIENCE, 1998, 282 (5394) :1683-1686
[4]   EMISSION IN REGION 4000 TO 7000 A VIA 4-PHOTON COUPLING IN GLASS [J].
ALFANO, RR ;
SHAPIRO, SL .
PHYSICAL REVIEW LETTERS, 1970, 24 (11) :584-&
[5]   Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy [J].
Altkorn, R ;
Koev, I ;
VanDuyne, RP ;
Litorja, M .
APPLIED OPTICS, 1997, 36 (34) :8992-8998
[6]   Nanotechnology: Wired for success [J].
Appell, D .
NATURE, 2002, 419 (6907) :553-555
[7]   Shift of whispering-gallery modes in microspheres by protein adsorption [J].
Arnold, S ;
Khoshsima, M ;
Teraoka, I ;
Holler, S ;
Vollmer, F .
OPTICS LETTERS, 2003, 28 (04) :272-274
[8]   Optical trapping and manipulation of neutral particles using lasers [J].
Ashkin, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :4853-4860
[9]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[10]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&