Localized states in a nonlinear optical system with a binary-phase slice and a feedback mirror

被引:18
作者
Samson, BA
Vorontsov, MA
机构
[1] BYELARUSSIAN ACAD SCI, INST PHYS, MINSK 220602, BELARUS
[2] NEW MEXICO STATE UNIV, LAS CRUCES, NM 88003 USA
来源
PHYSICAL REVIEW A | 1997年 / 56卷 / 02期
关键词
D O I
10.1103/PhysRevA.56.1621
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider spatiotemporal dynamics in an optical system containing a thin film of nonlinear medium having binary-type refractive nonlinear response and a feedback mirror. Steady-state output transverse patterns consist of a set of localized states, and strongly depend on the initial spatial phase modulation (seeded phase image). These steady-state solution properties can be used for nonlinear image processing and edge detection. System dynamics are studied both theoretically and through numerical simulation.
引用
收藏
页码:1621 / 1626
页数:6
相关论文
共 24 条
[1]  
BERESNEV LA, IN PRESS FERROELECTR
[2]   STABLE LOCALIZED SOLUTIONS IN NONLINEAR OPTICS WITH LARGE DISSIPATION [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICA A, 1994, 204 (1-4) :87-95
[3]   SUBMICROSECOND BISTABLE ELECTRO-OPTIC SWITCHING IN LIQUID-CRYSTALS [J].
CLARK, NA ;
LAGERWALL, ST .
APPLIED PHYSICS LETTERS, 1980, 36 (11) :899-901
[4]   PATTERN-FORMATION IN THE STRONG RESONANT FORCING OF SPATIALLY DISTRIBUTED OSCILLATORS [J].
COULLET, P ;
EMILSSON, K .
PHYSICA A, 1992, 188 (1-3) :190-200
[5]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[6]   HEXAGONAL SPATIAL PATTERNS FOR A KERR SLICE WITH A FEEDBACK MIRROR [J].
DALESSANDRO, G ;
FIRTH, WJ .
PHYSICAL REVIEW A, 1992, 46 (01) :537-548
[7]  
Degtiarev E V, 1995, SELFORGANIZATION OPT, P45
[8]   SPONTANEOUS PATTERN-FORMATION IN AN ABSORPTIVE SYSTEM [J].
FIRTH, WJ ;
SCROGGIE, AJ .
EUROPHYSICS LETTERS, 1994, 26 (07) :521-526
[9]   Optical bullet holes: Robust controllable localized states of a nonlinear cavity [J].
Firth, WJ ;
Scroggie, AJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1623-1626
[10]  
GAPONOVGREKHOV AV, 1989, NONLINEAR WAVES, V1, P65