Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools

被引:111
作者
Ismagilov, RF [1 ]
Ng, JMK [1 ]
Kenis, PJA [1 ]
Whitesides, GM [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1021/ac010502a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper describes microfluidic systems that can be used to investigate multiple chemical or biochemical interactions in a parallel format. These three-dimensional systems are generated by crossing two sets of microfluidic channels, fabricated in two different layers, at tight angles. Solutions of the reagents are placed in the channels; in different modes of operation, these solutions can be either flowing or stationary-the latter is important when one set of channels is filled with viscous gels with immobilized reagents. At every crossing, the channels are separated either by a single membrane or by a composite separator comprising a membrane, a microwell, and a second membrane. These components allow diffusive mass transport and minimize convective transport through the crossing. Polycarbonate membranes with 0.1-1-mum vertical pores were used to fabricate the devices. Each crossing of parallel channels serves as an element in which chemical or biochemical interactions can take place; interactions can be detected by monitoring changes in fluorescence and absorbance. These all-organic systems are straightforward to fabricate and to operate and may find applications as portable microanalytical systems and as tools in combinatorial research.
引用
收藏
页码:5207 / 5213
页数:7
相关论文
共 20 条
[1]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[2]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245
[3]  
BISHOP ML, 1996, CLIN CHEM PRINCIPLES
[4]   A RAPID, SENSITIVE METHOD FOR DETECTION OF ALKALINE-PHOSPHATASE CONJUGATED ANTI-ANTIBODY ON WESTERN BLOTS [J].
BLAKE, MS ;
JOHNSTON, KH ;
RUSSELLJONES, GJ ;
GOTSCHLICH, EC .
ANALYTICAL BIOCHEMISTRY, 1984, 136 (01) :175-179
[5]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[6]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[7]  
Eggins B. R., 1996, INTRO BIOSENSORS
[8]   Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels [J].
Ismagilov, RF ;
Stroock, AD ;
Kenis, PJA ;
Whitesides, G ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2000, 76 (17) :2376-2378
[9]   Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer [J].
Jo, BH ;
Van Lerberghe, LM ;
Motsegood, KM ;
Beebe, DJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9 (01) :76-81
[10]   Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor [J].
Kamholz, AE ;
Weigl, BH ;
Finlayson, BA ;
Yager, P .
ANALYTICAL CHEMISTRY, 1999, 71 (23) :5340-5347