Order-parameter distribution function of finite O(n) symmetric systems

被引:38
作者
Chen, XS
Dohm, V
Schultka, N
机构
[1] Institut für Theoretische Physik, Technische Hochschule Aachen, Aachen, D-52056
关键词
D O I
10.1103/PhysRevLett.77.3641
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present analytic and numerical studies of the order-parameter distribution function near the critical point of O(n) symmetric three-dimensional (3D) systems in a finite geometry. The distribution function is calculated within the rho(4) field theory for a 3D cube with periodic boundary conditions by means of a new approach that appropriately deals with the Goldstone modes below T-c. Good agreement is found with new Monte Carlo data for the distribution function of the magnetization of the 3D XY (n = 2) and Heisenberg (n = 3) models.
引用
收藏
页码:3641 / 3644
页数:4
相关论文
共 29 条
[1]  
Amit D. J., 1978, FIELD THEORY RENORMA
[2]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[3]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[4]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[5]   STATIC CRITICAL-BEHAVIOR OF 3-DIMENSIONAL CLASSICAL HEISENBERG MODELS - A HIGH-RESOLUTION MONTE-CARLO STUDY [J].
CHEN, K ;
FERRENBERG, AM ;
LANDAU, DP .
PHYSICAL REVIEW B, 1993, 48 (05) :3249-3256
[6]  
CHEN XS, 1995, J PHYS I, V5, P205, DOI 10.1051/jp1:1995121
[7]   Comparison between finite-size field theory and Monte Carlo simulations for the three-dimensional Ising model [J].
Chen, XS ;
Dohm, V ;
Talapov, AL .
PHYSICA A, 1996, 232 (1-2) :375-396
[8]  
CHEN XS, IN PRESS
[10]   FINITE-SIZE EFFECTS, GOLDSTONE BOSONS AND CRITICAL EXPONENTS IN THE D=3 HEISENBERG-MODEL [J].
DIMITROVIC, I ;
HASENFRATZ, P ;
NAGER, J ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1991, 350 (03) :893-905