Identification of two novel components of the human NDC80 kinetochore complex

被引:97
作者
Bharadwaj, R [1 ]
Qi, W [1 ]
Yu, HT [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M310224200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate ( chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 ( hSPC25) and human SPC24 ( hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 ( human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference- mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.
引用
收藏
页码:13076 / 13085
页数:10
相关论文
共 39 条
[1]  
Campbell MS, 2001, J CELL SCI, V114, P953
[2]   Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast [J].
Cheeseman, IM ;
Drubin, DG ;
Barnes, G .
JOURNAL OF CELL BIOLOGY, 2002, 157 (02) :199-203
[3]   Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p [J].
Cheeseman, LM ;
Anderson, S ;
Jwa, M ;
Green, EM ;
Kang, JS ;
Yates, JR ;
Chan, CSM ;
Drubin, DG ;
Barnes, G .
CELL, 2002, 111 (02) :163-172
[4]   Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores [J].
Chen, RH ;
Shevchenko, A ;
Mann, M ;
Murray, AW .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :283-295
[5]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[6]   hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells [J].
DeLuca, JG ;
Moree, B ;
Hickey, JM ;
Kilmartin, JV ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 2002, 159 (04) :549-555
[7]   Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores [J].
DeLuca, JG ;
Howell, BJ ;
Canman, JC ;
Hickey, JM ;
Fang, GW ;
Salmon, ED .
CURRENT BIOLOGY, 2003, 13 (23) :2103-2109
[8]   Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis [J].
Echeverri, CJ ;
Paschal, BM ;
Vaughan, KT ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :617-633
[9]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[10]   Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin a starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint [J].
Geley, S ;
Kramer, E ;
Gieffers, C ;
Gannon, J ;
Peters, JM ;
Hunt, T .
JOURNAL OF CELL BIOLOGY, 2001, 153 (01) :137-147