Chromosome-mediated and direct gene transfers in wheat

被引:58
作者
Jauhar, PP [1 ]
Chibbar, RN
机构
[1] USDA ARS, No Crop Sci Lab, Fargo, ND 58105 USA
[2] Natl Res Council Canada, Inst Plant Biotechnol, Saskatoon, SK S7N 0W9, Canada
关键词
alien-gene transfer; fluorescent GISH; Giemsa banding; homoeologous chromosome pairing; molecular markers; transgenic bread wheat; transgenic durum wheat;
D O I
10.1139/gen-42-4-570
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Wild grasses, including relatives of wheat, have several desirable characters that can be introduced into both bread wheat and durum wheat. Since current wheat cultivars lack certain traits, for example, resistance to fusarium head blight (scab), related wild grasses may be the only option for useful variability. Wide hybridization of wheat with grasses, coupled with cytogenetic manipulation of the hybrid material, has been instrumental in the genetic improvement of wheat. Chromosome engineering methodologies, based on the manipulation of pairing control mechanisms and induced translocations, have been employed to transfer into wheat specific disease and pest resistance genes from annual (e.g., rye) or perennial (e.g., Thinopyrum spp., Lophopyrum spp., and Agropyron? spp.) members of the wheat tribe, Triticeae. The advent of in situ hybridization techniques, for example, fluorescent GISH combined with Giemsa C-banding, has proved immensely useful in characterizing alien chromatin specifying resistance to various pathogens and pests. The use of DNA markers (RAPDs and RFLPs) helps to identify desirable genotypes more precisely and, thereby, facilitates gene transfer into wheat. Such markers may be particularly helpful in monitoring the introgression of alien genes in the wheat genome. In fact, several cultivars, particularly of bread wheat, contain superior traits of alien origin. The development of novel gene-transfer techniques in the past decade that allow direct delivery of DNA into regenerable embryogenic callus of wheat has opened up new avenues of alien-gene transfer into wheat cultivars. Thus, transgenic bread and durum wheats have been produced and methods of gene delivery standardized. The application of transgenic technology has not only yielded herbicide-resistant wheats, but has also helped to improve grain quality by modifying the protein and starch profiles of the grain. These in vitro approaches to gene transfer are developing rapidly, and promise to become an integral part of plant breeding efforts, However, the new biotechnological tools will complement, not replace, conventional plant breeding.
引用
收藏
页码:570 / 583
页数:14
相关论文
共 146 条
[1]   COMPARATIVE LINKAGE MAPS OF THE RICE AND MAIZE GENOMES [J].
AHN, S ;
TANKSLEY, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7980-7984
[2]   Haploid durum wheat production via hybridization with maize [J].
Almouslem, AB ;
Jauhar, PP ;
Peterson, TS ;
Bommineni, VR ;
Rao, MB .
CROP SCIENCE, 1998, 38 (04) :1080-1087
[3]   Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat [J].
Altpeter, F ;
Vasil, V ;
Srivastava, V ;
Vasil, IK .
NATURE BIOTECHNOLOGY, 1996, 14 (09) :1155-1159
[4]   MOLECULAR MARKERS FOR 4 LEAF RUST RESISTANCE GENES INTROGRESSED INTO WHEAT FROM WILD RELATIVES [J].
AUTRIQUE, E ;
SINGH, RP ;
TANKSLEY, SD ;
SORRELLS, ME .
GENOME, 1995, 38 (01) :75-83
[5]  
BAGA M, 1999, ADV CELLULAR MOL BIO, V5, P83
[6]   RUST RESISTANCE IN TRITICUM-CYLINDRICUM CES (4X, CCDD) AND ITS TRANSFER INTO DURUM AND HEXAPLOID WHEATS [J].
BAI, D ;
SCOLES, GJ ;
KNOTT, DR .
GENOME, 1995, 38 (01) :8-16
[7]   THE USE OF CELL-CULTURE FOR SUBCHROMOSOMAL INTROGRESSIONS OF BARLEY YELLOW DWARF VIRUS-RESISTANCE FROM THINOPYRUM-INTERMEDIUM TO WHEAT [J].
BANKS, PM ;
LARKIN, PJ ;
BARIANA, HS ;
LAGUDAH, ES ;
APPELS, R ;
WATERHOUSE, PM ;
BRETTELL, RIS ;
CHEN, X ;
XU, HJ ;
XIN, ZY ;
QIAN, YT ;
ZHOU, XM ;
CHENG, ZM ;
ZHOU, GH .
GENOME, 1995, 38 (02) :395-405
[8]   Transformation of wheat with high molecular weight subunit genes results in improved functional properties [J].
Barro, F ;
Rooke, L ;
Békés, F ;
Gras, P ;
Tatham, AS ;
Fido, R ;
Lazzeri, PA ;
Shewry, PR ;
Barceló, P .
NATURE BIOTECHNOLOGY, 1997, 15 (12) :1295-1299
[9]   FERTILE TRANSGENIC WHEAT FROM MICROPROJECTILE BOMBARDMENT OF SCUTELLAR TISSUE [J].
BECKER, D ;
BRETTSCHNEIDER, R ;
LORZ, H .
PLANT JOURNAL, 1994, 5 (02) :299-307
[10]   Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat [J].
Blechl, AE ;
Anderson, OD .
NATURE BIOTECHNOLOGY, 1996, 14 (07) :875-879