Regulation of glycogen synthase in rat hepatocytes - Evidence for multiple signaling pathways

被引:54
作者
Lavoie, L
Band, CJ
Kong, M
Bergeron, JJM
Posner, BI
机构
[1] McGill Univ, Polypeptide Hormone Lab, Fac Med, Montreal, PQ H3A 2B2, Canada
[2] McGill Univ, Dept Anat & Cell Biol, Montreal, PQ H3A 2B2, Canada
关键词
D O I
10.1074/jbc.274.40.28279
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We examined the signaling pathways regulating glycogen synthase (GS) in primary cultures of rat hepatocytes. The activation of GS by insulin and glucose was completely reversed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Wortmannin also inhibited insulin-induced phosphorylation and activation of protein kinase B/Akt (PKB/Akt) as well as insulin-induced inactivation of GS kinase-3 (GSK-3), consistent with a role for the phosphatidylinositol 3-kinase/PKB-Akt/GSK-3 axis in insulin-induced GS activation. Although wortmannin completely inhibited the significantly greater level of GS activation produced by the insulin-mimetic bisperoxovanadium 1,10-phenanthroline (bpV-(phen)), there was only minimal accompanying inhibition of bpV(phen)-induced phosphorylation and activation of PKB/Akt, and inactivation of GSK-3. Thus, PKB/Akt activation and GSK-3 inactivation may be necessary but are not sufficient to induce GS activation in rat hepatocytes, Rapamycin partially inhibited the GS activation induced by bpV(phen) but not that effected by insulin. Both insulin- and bpV(phen)-induced activation of the atypical protein kinase C (zeta/lambda) (PKC (zeta/lambda)) was reversed by wortmannin, Inhibition of PKC (zeta/lambda) with a pseudosubstrate peptide had no effect on GS activation by insulin, but substantially reversed GS activation by bpV(phen). The combination of this inhibitor with rapamycin produced an additive inhibitory effect on bpV(phen)-mediated GS activation. Taken together, our results indicate that the signaling components mammalian target of rapamycin and PKC (zeta/lambda) as well as other yet to be defined effector(s) contribute to the modulation of GS in rat hepatocytes.
引用
收藏
页码:28279 / 28285
页数:7
相关论文
共 71 条
[1]   EGF or PDGF receptors activate atypical PKC lambda through phosphatidylinositol 3-kinase [J].
Akimoto, K ;
Takahashi, R ;
Moriya, S ;
Nishioka, N ;
Takayanagi, J ;
Kimura, K ;
Fukui, Y ;
Osada, S ;
Mizuno, K ;
Hirai, S ;
Kazlauskas, A ;
Ohno, S .
EMBO JOURNAL, 1996, 15 (04) :788-798
[2]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[3]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[4]   Insulin signal transduction through protein kinase cascades [J].
Avruch, J .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1998, 182 (1-2) :31-48
[5]  
Azpiazu I, 1996, J BIOL CHEM, V271, P5033
[6]   Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: Specificity of inhibition of IRK-associated protein tyrosine phosphatase(s) by bpV(phen) [J].
Band, CJ ;
Posner, BI ;
Dumas, V ;
Contreres, JO .
MOLECULAR ENDOCRINOLOGY, 1997, 11 (13) :1899-1910
[7]  
Band CJ, 1997, J BIOL CHEM, V272, P138
[8]   Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes [J].
Bandyopadhyay, G ;
Standaert, ML ;
Galloway, L ;
Moscat, J ;
Farese, RV .
ENDOCRINOLOGY, 1997, 138 (11) :4721-4731
[9]   Peroxovanadium compounds: Biological actions and mechanism of insulin-mimesis [J].
Bevan, AP ;
Drake, PG ;
Yale, JF ;
Shaver, A ;
Posner, BI .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1995, 153 (1-2) :49-58
[10]  
BEVAN PA, 1995, AM J PHYSIOL, V268, P60