Resonance conditions and deformable body co-ordinate systems

被引:45
作者
Shabana, AA
机构
关键词
D O I
10.1006/jsvi.1996.0193
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:389 / 398
页数:10
相关论文
共 12 条
[1]   DYNAMIC ANALYSIS OF MULTIBODY SYSTEMS USING COMPONENT MODES [J].
AGRAWAL, OP ;
SHABANA, AA .
COMPUTERS & STRUCTURES, 1985, 21 (06) :1303-1312
[2]   APPLICATION OF DEFORMABLE-BODY MEAN AXIS TO FLEXIBLE MULTIBODY SYSTEM DYNAMICS [J].
AGRAWAL, OP ;
SHABANA, AA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 56 (02) :217-245
[3]  
Blevin RD, 1979, FORMULAS NATURAL FRE
[4]   HAMILTONS PRINCIPLE - FINITE-ELEMENT METHODS AND FLEXIBLE BODY DYNAMICS [J].
CAVIN, RK ;
DUSTO, AR .
AIAA JOURNAL, 1977, 15 (12) :1684-1690
[5]  
CHU SC, 1975, T ASME, P542
[6]  
DEVEUBEKE BF, 1976, INT J ENG SCI, V14, P895, DOI DOI 10.1016/0020-7225(76)90102-6
[7]   A METHOD FOR SELECTING DEFORMATION MODES IN FLEXIBLE MULTIBODY DYNAMICS [J].
FRIBERG, O .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (08) :1637-1655
[8]   EQUIVALENCE OF THE DRIVING ELASTIC FORCES IN FLEXIBLE MULTIBODY SYSTEMS [J].
GOFRON, M ;
SHABANA, AA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (17) :2907-2928
[9]  
Gofron M., 1993, NONLINEAR DYNAM, V4, P183, DOI 10.1007/BF00045253
[10]  
MEIROVITCH L, 1986, ELEMENTS VIBRATION A