Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites

被引:1642
作者
Uehara, M
Mori, S
Chen, CH
Cheong, SW
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[3] Aoyama Gakuin Univ, Dept Phys, Tokyo 1578572, Japan
[4] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan
关键词
D O I
10.1038/21142
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colossal magnetoresistance(1)-an unusually large change of resistivity observed in certain materials following application of magnetic field-has been extensively researched in ferromagnetic perovskite manganites, But it remains unclear why the magnetoresistive response increases dramatically when the Curie temperature (T-C) is reduced Ln these materials, Te varies sensitively with changing chemical pressure; this can be achieved by introducing trivalent rare-earth ions of differing size into the perovskite structure(2-4), without affecting the valency of the Mn ions. The chemical pressure modifies local structural parameters such as the Mn-O bond distance and Mn-O-Mn bond angle, which directly influence the case of electron hopping between hin ions (that is, the electronic bandwidth). But these effects cannot satisfactorily explain the dependence of magnetoresistance on Tc. Here we demonstrate, using electron microscopy data, that the prototypical (La,Pr,Ca)MnO3 system is electronically phase-separated into a sub-micrometre-scale mixture of insulating regions (with a particular type of charge-ordering) and metallic, ferromagnetic domains. We find that the colossal magnetoresistive effect in low-T-C systems can be explained by percolative transport through the ferromagnetic domains; this depends sensitively on the relative spin orientation of adjacent ferromagnetic domains which can be controlled by applied magnetic fields.
引用
收藏
页码:560 / 563
页数:4
相关论文
共 33 条
[1]   Electronic phase separation in lanthanum manganites: Evidence from Mn-55 NMR [J].
Allodi, G ;
De Renzi, R ;
Guidi, G ;
Licci, F ;
Pieper, MW .
PHYSICAL REVIEW B, 1997, 56 (10) :6036-6046
[2]   Current switching of resistive states in magnetoresistive manganites [J].
Asamitsu, A ;
Tomioka, Y ;
Kuwahara, H ;
Tokura, Y .
NATURE, 1997, 388 (6637) :50-52
[3]   Charge-ordered stripes in La1-xCaxMnO3 with x>0.5 [J].
Chen, CH ;
Cheong, SW ;
Hwang, HY .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) :4326-4330
[4]   Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3 [J].
Chen, CH ;
Cheong, SW .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :4042-4045
[5]  
Cheong S.-W., 1999, MONOGRAPHS CONDENSED
[6]   ELECTRON LOCALIZATION IN MIXED-VALENCE MANGANITES [J].
COEY, JMD ;
VIRET, M ;
RANNO, L ;
OUNADJELA, K .
PHYSICAL REVIEW LETTERS, 1995, 75 (21) :3910-3913
[7]   Evidence for magnetic polarons in the magnetoresistive perovskites [J].
DeTeresa, JM ;
Ibarra, MR ;
Algarabel, PA ;
Ritter, C ;
Marquina, C ;
Blasco, J ;
Garcia, J ;
delMoral, A ;
Arnold, Z .
NATURE, 1997, 386 (6622) :256-259
[8]   FRUSTRATED ELECTRONIC PHASE-SEPARATION AND HIGH-TEMPERATURE SUPERCONDUCTORS [J].
EMERY, VJ ;
KIVELSON, SA .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1993, 209 (04) :597-621
[9]   Evolution of the low-frequency spin dynamics in ferromagnetic manganites [J].
Fernandez-Baca, JA ;
Dai, P ;
Hwang, HY ;
Kloc, C ;
Cheong, SW .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4012-4015
[10]   Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3 [J].
Fiebig, M ;
Miyano, K ;
Tomioka, Y ;
Tokura, Y .
SCIENCE, 1998, 280 (5371) :1925-1928