Measuring the transverse magnetization of rotating ferrofluids

被引:38
作者
Embs, JP [1 ]
May, S
Wagner, C
Kityk, AV
Leschhorn, A
Lücke, M
机构
[1] Univ Saarland, D-66041 Saarbrucken, Germany
[2] Univ Hull, Dept Phys, Kingston Upon Hull HU6 7RX, N Humberside, England
[3] Czestochowa Tech Univ, Elect Engn Dept, Inst Comp Sci, PL-42200 Czestochowa, Poland
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevE.73.036302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on measurements of the transverse magnetization of a ferrofluid rotating as a rigid body in a constant magnetic field, H-0, applied perpendicular to the axis of rotation. The rotation of the fluid leads to a nonequilibrium situation, where the ferrofluid magnetization M and the magnetic field within the sample, H, are no longer parallel to each other. The off-axis magnetization perpendicular to H-0 is measured as a function of both the applied magnetic field H-0 and the angular frequency Omega. The latter ranges from a few hertz to frequencies well above a characteristic inverse Brownian relaxation time. Our experimental results strongly indicate that the transverse magnetization is caused only by a small fraction of the colloidal ferromagnetic particles. The effect of the polydispersity of the ferrofluid is discussed. Experimental results are compared to predictions based on several theoretical models. A single-time relaxation approach for the so-called effective field and a field-dependent Debye relaxation of M yield reasonably good shapes of the curves of transverse magnetization vs Omega. However, like the other models, they overestimate their magnitudes.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 23 条
[1]   Magnetic drug targeting - Biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment [J].
Alexiou, C ;
Jurgons, R ;
Schmid, RJ ;
Bergemann, C ;
Henke, J ;
Erhardt, W ;
Huenges, E ;
Parak, F .
JOURNAL OF DRUG TARGETING, 2003, 11 (03) :139-149
[2]  
Alexiou C, 2000, CANCER RES, V60, P6641
[3]   NEGATIVE-VISCOSITY EFFECT IN A MAGNETIC FLUID [J].
BACRI, JC ;
PERZYNSKI, R ;
SHLIOMIS, MI ;
BURDE, GI .
PHYSICAL REVIEW LETTERS, 1995, 75 (11) :2128-2131
[4]   Measuring the rotational viscosity of ferrofluids without shear flow [J].
Embs, J ;
Müller, HW ;
Wagner, C ;
Knorr, K ;
Lücke, M .
PHYSICAL REVIEW E, 2000, 61 (03) :R2196-R2199
[5]   AN EXPERIMENTAL-OBSERVATION OF THE DYNAMIC BEHAVIOR OF FERROFLUIDS [J].
FANNIN, PC .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1994, 136 (1-2) :49-58
[6]   Complex susceptibility measurements of magnetic fluids over the frequency range 50 MHz to 18 GHz [J].
Fannin, PC ;
Perov, PA ;
Charles, SW .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (14) :1583-1586
[7]   Hydrodynamics of magnetic and dielectric fluids in interaction with the electromagnetic field [J].
Felderhof, BU ;
Kroh, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (15) :7403-7411
[8]   Energy conversion in ferrofluids: Magnetic nanoparticles as motors or generators [J].
Gazeau, F ;
Baravian, C ;
Bacri, JC ;
Perzynski, R ;
Shliomis, MI .
PHYSICAL REVIEW E, 1997, 56 (01) :614-618
[9]   Magnetic susceptibility in a rotating ferrofluid: Magneto-vortical resonance [J].
Gazeau, F ;
Heegaard, BM ;
Bacri, JC ;
Cebers, A ;
Perzynski, R .
EUROPHYSICS LETTERS, 1996, 35 (08) :609-614
[10]   Magneto-vortical birefringence in a ferrofluid [J].
Heegaard, BM ;
Bacri, JC ;
Perzynski, R ;
Shliomis, MI .
EUROPHYSICS LETTERS, 1996, 34 (04) :299-304