The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), have been suggested to act as P-cell growth factors and may therefore be of critical importance for the maintenance of a proper P-cell mass. We have investigated the molecular mechanism of incretin-induced beta-cell replication in primary monolayer cultures of newborn rat islet cells. GLP-1, GIP and the long-acting GLP-1 derivative, liraglutide, increased P-cell replication 50-80% at 10-100 nM upon a 24 h stimulus, whereas glucagon at a similar concentration had no significant effect. The stimulatory effect of GLP-1 and GIP was efficiently mimicked by the adenylate cyclase activator, forskolin, at 10 nM (similar to 90% increase) and was additive (similar to 170-250% increase) with the growth response to human growth hormone (hGH), indicating the use of distinct intracellular signalling pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, both inhibited GLP-1- and GIP-stimulated proliferation. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, had no inhibitory effect oil either GLP-1 or GIP stimulated proliferation. Cyclin Ds act as molecular switches for the G0/G1-S phase transition in many cell types and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 mRNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-I cells revealed approximately a 2-3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4-7 fold increase in response to forskolin. However, treatment of either cell type with hGH had no effect on cyclin D I promoter activity. The stimulation of the cyclin D-1 prornoter by GLP-1 was inhibited by H89, wortmannin, and PD98059. We conclude that incretin-induced beta-cell replication is dependent oil cAMP/PKA, p42 MAPK and PI3K activities, which may involve transcriptional induction of cyclin M. GLP-1, GIP and liraglutide may have the potential to increase P-cell replication in humans which would have significant impact oil long-term diabetes treatment.