Mapping of the K+/Na+ discrimination locus Kna1 in wheat

被引:199
作者
Dubcovsky, J [1 ]
Maria, GS [1 ]
Epstein, E [1 ]
Luo, MC [1 ]
Dvorak, J [1 ]
机构
[1] UNIV CALIF DAVIS, DEPT LAND AIR & WATER RESOURCES, DAVIS, CA 95616 USA
关键词
wheat; salt tolerance; homoeologous recombination; QTL; RFLP; genetic marker;
D O I
10.1007/BF00223692
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In saline environments, bread wheat, Triticum aestivum L. (genomes AABBDD), accumulates less Na+ and more K+ in expanding and young leaves than durum wheat, T. turgidum L. (genomes AABB). Higher K+/Na+ ratios in leaves of bread wheat correlate with its higher salt tolerance. Chromosome 4D from bread wheat was shown in previous work to play an important role in the control of this trait and was recombined with chromosome 4B in the absence of the Phl locus. A population of plants disomic for 4D/4B recombined chromosomes in the genetic background of T. turgidum was developed to investigate the genetic control of K+/Na+ discrimination by chromosome 4D. Evidence was obtained that the trait is controlled by a single locus, designated Kna1, in the long arm of chromosome 4D. In the present work, K+/Na+ discrimination was determined for additional families with 4D/4B chromosomes. The concentrations of Na+ and K+/Na+ ratios in the youngest leaf blades clustered in two nonoverlapping classes, and all recombinant families could be unequivocally assigned to Kna1 and kan1 classes. The Kna1 locus scored this way was mapped on a short region in the 4DL arm and was completely linked to Xwg199, Xabc305, Xbcd402, Xpsr567, and Xpsr375; it was also mapped as a quantitative trait. The results of the QTL analysis, based on the K+/Na+ ratios in the young leaves of greenhouse-grown plants and flag leaves of field-grown plants, agreed with the position of Kna1 determined as a qualitative trait. Several aspects of gene introgression by manipulation of the Phl locus are discussed.
引用
收藏
页码:448 / 454
页数:7
相关论文
共 27 条
[1]   Development of a chromosomal arm map for wheat based on RFLP markers [J].
Anderson, J. A. ;
Ogihara, Y. ;
Sorrells, M. E. ;
Tanksley, S. D. .
THEORETICAL AND APPLIED GENETICS, 1992, 83 (08) :1035-1043
[2]   A CDNA-BASED COMPARISON OF DEHYDRATION-INDUCED PROTEINS (DEHYDRINS) IN BARLEY AND CORN [J].
CLOSE, TJ ;
KORTT, AA ;
CHANDLER, PM .
PLANT MOLECULAR BIOLOGY, 1989, 13 (01) :95-108
[3]   DIFFERENTIAL SOLUTE REGULATION IN LEAF BLADES OF VARIOUS AGES IN SALT-SENSITIVE WHEAT AND A SALT-TOLERANT WHEAT X LOPHOPYRUM-ELONGATUM (HOST) LOVE,A AMPHIPLOID [J].
COLMER, TD ;
EPSTEIN, E ;
DVORAK, J .
PLANT PHYSIOLOGY, 1995, 108 (04) :1715-1724
[4]   STRUCTURAL EVOLUTION OF WHEAT CHROMOSOMES 4A, 5A, AND 7B AND ITS IMPACT ON RECOMBINATION [J].
DEVOS, KM ;
DUBCOVSKY, J ;
DVORAK, J ;
CHINOY, CN ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1995, 91 (02) :282-288
[5]   COMPARISON OF THE GENETIC ORGANIZATION OF THE EARLY SALT-STRESS-RESPONSE GENE SYSTEM IN SALT-TOLERANT LOPHOPYRUM-ELONGATUM AND SALT-SENSITIVE WHEAT [J].
DUBCOVSKY, J ;
GALVEZ, AF ;
DVORAK, J .
THEORETICAL AND APPLIED GENETICS, 1994, 87 (08) :957-964
[6]   ENHANCEMENT OF THE SALT TOLERANCE OF TRITICUM-TURGIDUM L BY THE KNA1 LOCUS TRANSFERRED FROM THE TRITICUM-AESTIVUM L CHROMOSOME 4D BY HOMOEOLOGOUS RECOMBINATION [J].
DVORAK, J ;
NOAMAN, MM ;
GOYAL, S ;
GORHAM, J .
THEORETICAL AND APPLIED GENETICS, 1994, 87 (07) :872-877
[7]  
Dvorak J, 1995, GENOME, V38, P1139, DOI 10.1139/g95-151
[8]  
DVORAK J, 1984, GENETICS, V106, P325
[9]   APPARENT SOURCES OF THE A GENOMES OF WHEATS INFERRED FROM POLYMORPHISM IN ABUNDANCE AND RESTRICTION FRAGMENT LENGTH OF REPEATED NUCLEOTIDE-SEQUENCES [J].
DVORAK, J ;
MCGUIRE, PE ;
CASSIDY, B .
GENOME, 1988, 30 (05) :680-689
[10]   METHODOLOGY OF GENE-TRANSFER BY HOMOEOLOGOUS RECOMBINATION INTO TRITICUM-TURGIDUM - TRANSFER OF K+/NA+ DISCRIMINATION FROM TRITICUM-AESTIVUM [J].
DVORAK, J ;
GORHAM, J .
GENOME, 1992, 35 (04) :639-646