Solving unsymmetric sparse systems of linear equations with PARDISO

被引:1019
作者
Schenk, O
Gärtner, K
机构
[1] Univ Basel, Dept Comp Sci, CH-4056 Basel, Switzerland
[2] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] Weierstr Inst Appl Anal & Stochast, D-10117 Berlin, Germany
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2004年 / 20卷 / 03期
关键词
computational sciences; numerical linear algebra; direct solver; unsymmetric linear systems;
D O I
10.1016/j.future.2003.07.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to extend these concepts further and unsymmetric prepermutation of rows is used to place large matrix entries on the diagonal. Complete block diagonal supernode pivoting allows dynamical interchanges of columns and rows during the factorization process. The level-3 BLAS efficiency is retained and an advanced two-level left-right looking scheduling scheme results in good speedup on SMP machines. These algorithms have been integrated into the recent unsymmetric version of the PARDISO solver. Experiments demonstrate that a wide set of unsymmetric linear systems can be solved and high performance is consistently achieved for large sparse unsymmetric matrices from real world applications. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 487
页数:13
相关论文
共 22 条
[1]   EXPLOITING FUNCTIONAL PARALLELISM OF POWER2 TO DESIGN HIGH-PERFORMANCE NUMERICAL ALGORITHMS [J].
AGARWAL, RC ;
GUSTAVSON, FG ;
ZUBAIR, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1994, 38 (05) :563-576
[2]   An approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :886-905
[3]   Analysis and comparison of two general sparse solvers for distributed memory computers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Li, XS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (04) :388-421
[4]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[5]   SOLVING SPARSE LINEAR-SYSTEMS WITH SPARSE BACKWARD ERROR [J].
ARIOLI, M ;
DEMMEL, JW ;
DUFF, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (02) :165-190
[6]   THE INFLUENCE OF RELAXED SUPERNODE PARTITIONS ON THE MULTIFRONTAL METHOD [J].
ASHCRAFT, C ;
GRIMES, R .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04) :291-309
[7]   An unsymmetric-pattern multifrontal method for sparse LU factorization [J].
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :140-158
[8]  
DAVIS TA, 2002, TR022002 U FLOR COMP
[9]  
Davis Tim., U FLORIDA SPARSE MAT
[10]   A supernodal approach to sparse partial pivoting [J].
Demmel, JW ;
Eisenstat, SC ;
Gilbert, JR ;
Li, XYS ;
Liu, JWH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :720-755