Decision analysis by augmented probability simulation

被引:43
作者
Bielza, C [1 ]
Müller, P
Insua, DR
机构
[1] Madrid Technol Univ, Decis Anal Grp, Madrid, Spain
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27706 USA
关键词
decision analysis; influence diagrams; Markov chain Monte Carlo; optimal design; simulation;
D O I
10.1287/mnsc.45.7.995
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide a generic Monte Carlo method to find the alternative of maximum expected utility in a decision analysis. We define an artificial distribution on the product space of alternatives and states, and show that the optimal alternative is the mode of the implied marginal distribution on the alternatives. After drawing a sample from the artificial distribution, we may use exploratory data analysis tools to approximately identify the optimal alternative. We illustrate our method for some important types of influence diagrams.
引用
收藏
页码:995 / 1007
页数:13
相关论文
共 41 条
[1]  
[Anonymous], 1995, CODA CONVERGENCE DIA
[2]  
BIELZA C, 1998, IN PRESS MANAGEMENT
[3]   A comparison of hybrid strategies for Gibbs sampling in mixed graphical models [J].
Brewer, MJ ;
Aitken, CGG ;
Talbot, M .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 21 (03) :343-365
[4]  
BROOKS S, 1999, IN PRESS STAT COMPUT
[5]   Approaches for optimal sequential decision analysis in clinical trials [J].
Carlin, BP ;
Kadane, JB ;
Gelfand, AE .
BIOMETRICS, 1998, 54 (03) :964-975
[6]  
CHARNES J, 1996, FORWARD MONTE CARLO
[7]  
CLYDE M, 1995, EXPLORING EXPECTED U
[8]  
COOPER G, 1989, UNCERTAINTY ARTIFICI, V4, P55
[9]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[10]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409