Highly conductive and stretchable conductors fabricated from bacterial cellulose

被引:219
作者
Liang, Hai-Wei [1 ]
Guan, Qing-Fang [1 ]
Zhu-Zhu [1 ]
Song, Lu-Ting [1 ]
Yao, Hong-Bin [1 ]
Lei, Xuan [1 ]
Yu, Shu-Hong [1 ]
机构
[1] USTC, Natl Synchrotron Radiat Lab, Hefei Natl Lab Phys Sci Microscale HFNL, Div Nanomat & Chem,Dept Chem, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
aerogels; bacterial cellulose; carbon nanofibers; electrical conductivity; pyrolysis; stretchable conductors; CARBON NANOTUBES; ELASTIC CONDUCTORS; POLYMER; ELECTRONICS; COMPOSITES; GRAPHENE; MATRIX; FILMS; NANOCOMPOSITES; NANOFIBERS;
D O I
10.1038/am.2012.34
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Advanced materials that can remain electrically conductive under substantial elastic stretch and bending have attracted extensive interest recently owing to their broad application potentials, particularly for flexible electronics. Here, we have developed a simple and inexpensive method to fabricate highly conductive and stretchable composites using bacterial cellulose (BC) pellicles as starting materials, which can be produced in large amounts on an industrial scale via a microbial fermentation process. The prepared pyrolyzed BC (p-BC)/polydimethylsiloxane (PDMS) composites exhibit a high electrical conductivity of 0.20-0.41 S cm(-1), which is much higher than conventional carbon nanotubes and graphene-based composites. More importantly, the p-BC/PDMS composites that combine high stretchability with high conductivity show great electromechanical stability. Even after 1000 stretching cycles at the maximum strain of 80%, the resistance of the composites increased by only similar to 10%. The resistance increased slightly (similar to 4%) after 5000 bending cycles with a maximum bending radius of 1.0 mm. NPG Asia Materials (2012) 4, e19; doi: 10.1038/am.2012.34; published online 1 June 2012
引用
收藏
页码:e19 / e19
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2001, Chinese Patent, Patent No. [ZL 96100534.3, 961005343]
[2]   Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J].
Bowden, N ;
Brittain, S ;
Evans, AG ;
Hutchinson, JW ;
Whitesides, GM .
NATURE, 1998, 393 (6681) :146-149
[3]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[4]   Bioinspired Layered Composites Based on Flattened Double-Walled Carbon Nanotubes [J].
Cheng, Qunfeng ;
Li, Mingzhu ;
Jiang, Lei ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2012, 24 (14) :1838-1843
[5]   Highly conductive, printable and stretchable composite films of carbon nanotubes and silver [J].
Chun, Kyoung-Yong ;
Oh, Youngseok ;
Rho, Jonghyun ;
Ahn, Jong-Hyun ;
Kim, Young-Jin ;
Choi, Hyouk Ryeol ;
Baik, Seunghyun .
NATURE NANOTECHNOLOGY, 2010, 5 (12) :853-857
[6]   Bacterial cellulose - a masterpiece of nature's arts [J].
Iguchi, M ;
Yamanaka, S ;
Budhiono, A .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (02) :261-270
[7]   Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications [J].
Jung, YJ ;
Kar, S ;
Talapatra, S ;
Soldano, C ;
Viswanathan, G ;
Li, XS ;
Yao, ZL ;
Ou, FS ;
Avadhanula, A ;
Vajtai, R ;
Curran, S ;
Nalamasu, O ;
Ajayan, PM .
NANO LETTERS, 2006, 6 (03) :413-418
[8]   A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates [J].
Khang, DY ;
Jiang, HQ ;
Huang, Y ;
Rogers, JA .
SCIENCE, 2006, 311 (5758) :208-212
[9]   Stretchable, Curvilinear Electronics Based on Inorganic Materials [J].
Kim, Dae-Hyeong ;
Xiao, Jianliang ;
Song, Jizhou ;
Huang, Yonggang ;
Rogers, John A. .
ADVANCED MATERIALS, 2010, 22 (19) :2108-2124
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710