The transcriptional activation region of Msn2p, in Saccharomyces cerevisiae, is regulated by stress but is insensitive to the cAMP signalling pathway

被引:21
作者
Boy-Marcotte, E
Garmendia, C
Garreau, H
Lallet, S
Mallet, L
Jacquet, M
机构
[1] Univ Paris 11, CNRS, UMR C8621, Inst Genet & Microbiol,Lab Informat Genet & Dev, F-91405 Orsay, France
[2] Univ Paris 06, Dept Biol Genomes, Lab Ingn Prot & Controle Metab, Inst Jacques Monod,CNRS,UMR 7592, F-75251 Paris 05, France
[3] Univ Paris 07, Dept Biol Genomes, Lab Ingn Prot & Controle Metab, Inst Jacques Monod,CNRS,UMR 7592, F-75251 Paris 05, France
关键词
stress response; transcription factor; cAMP; protein kinase A (PKA); nuclear localization;
D O I
10.1007/s00438-005-0017-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Msn2p is a transcription factor that mediates a transient cellular response to multiple stresses and to changes in the nutritional environment. It was previously shown that the C-terminal half of Msn2p contains the DNA binding domain, a nuclear localization signal and nuclear export determinants which are activated by stress. In this report, we demonstrate that the N-terminal half of Msn2p contains the transcriptional activation domain(s). In addition, we present evidence that this region of Msn2p is able to mediate both the activation of transcription and export of the protein from the nucleus in response to stress. Interestingly, while the stress response integrated by the components of the C-terminal half that are involved in nucleocytoplasmic localization is reversed by elevated levels of cAMP, the effects of stress on the transcriptional activation domain and the localization determinants present in the N-terminal half of Msn2p are insensitive to variations in the intracellular cAMP concentrations.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 37 条
[1]  
BARTEL PL, 1995, METHOD ENZYMOL, V254, P241
[2]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[3]   Genetic factors that regulate the attenuation of the general stress response of yeast [J].
Bose, S ;
Dutko, JA ;
Zitomer, RS .
GENETICS, 2005, 169 (03) :1215-1226
[4]   The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons [J].
Boy-Marcotte, E ;
Lagniel, G ;
Perrot, M ;
Bussereau, F ;
Boudsocq, A ;
Jacquet, M ;
Labarre, J .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :274-283
[5]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[6]   SDC25, a dispensable ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation [J].
BoyMarcotte, E ;
Ikonomi, P ;
Jacquet, M .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (04) :529-539
[7]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[8]   The Ras/IPKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus [J].
Chang, YW ;
Howard, SC ;
Herman, PK .
MOLECULAR CELL, 2004, 15 (01) :107-116
[9]   Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase [J].
Chi, Y ;
Huddleston, MJ ;
Zhang, XL ;
Young, RA ;
Annan, RS ;
Carr, SA ;
Deshaies, RJ .
GENES & DEVELOPMENT, 2001, 15 (09) :1078-1092
[10]   CDC39, AN ESSENTIAL NUCLEAR-PROTEIN THAT NEGATIVELY REGULATES TRANSCRIPTION AND DIFFERENTIALLY AFFECTS THE CONSTITUTIVE AND INDUCIBLE HIS3 PROMOTERS [J].
COLLART, MA ;
STRUHL, K .
EMBO JOURNAL, 1993, 12 (01) :177-186