Possible Anderson transition below two dimensions in disordered systems of noninteracting electrons

被引:12
作者
Asada, Y
Slevin, K
Ohtsuki, T
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan
[3] Sophia Univ, Dept Phys, Chiyoda Ku, Tokyo 1028554, Japan
来源
PHYSICAL REVIEW B | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevB.73.041102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the possibility of an Anderson transition below two dimensions in disordered systems of noninteracting electrons with symplectic symmetry. Numerical analysis of energy level statistics and conductance statistics on Sierpinski carpets with spin-orbit coupling indicates the occurrence of an Anderson transition below two dimensions.
引用
收藏
页数:4
相关论文
共 26 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   NUMERICAL STUDY OF SYMMETRY EFFECTS ON LOCALIZATION IN 2 DIMENSIONS [J].
ANDO, T .
PHYSICAL REVIEW B, 1989, 40 (08) :5325-5339
[3]   QUANTUM POINT CONTACTS IN MAGNETIC-FIELDS [J].
ANDO, T .
PHYSICAL REVIEW B, 1991, 44 (15) :8017-8027
[4]   Numerical estimation of the β function in two-dimensional systems with spin-orbit coupling -: art. no. 035115 [J].
Asada, Y ;
Slevin, K ;
Ohtsuki, T .
PHYSICAL REVIEW B, 2004, 70 (03) :035115-1
[5]   Anderson transition in two-dimensional systems with spin-orbit coupling [J].
Asada, Y ;
Slevin, K ;
Ohtsuki, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[6]  
Cullum J. K., 1985, LANCZOS ALGORITHMS L
[7]   ANOMALOUS RELAXATION IN FRACTAL STRUCTURES [J].
FUJIWARA, S ;
YONEZAWA, F .
PHYSICAL REVIEW E, 1995, 51 (03) :2277-2285
[8]   GEOMETRIC IMPLEMENTATION OF HYPERCUBIC LATTICES WITH NONINTEGER DIMENSIONALITY BY USE OF LOW LACUNARITY FRACTAL LATTICES [J].
GEFEN, Y ;
MEIR, Y ;
MANDELBROT, BB ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1983, 50 (03) :145-148
[9]   ANDERSON LOCALIZATION IN A NONLINEAR-SIGMA-MODEL REPRESENTATION [J].
HIKAMI, S .
PHYSICAL REVIEW B, 1981, 24 (05) :2671-2679
[10]  
HIKAMI S, 1992, PROG THEOR PHYS SUPP, P213, DOI 10.1143/PTPS.107.213