A posteriori error estimates for elliptic problems in two and three space dimensions

被引:104
作者
Bornemann, FA [1 ]
Erdmann, B [1 ]
Kornhuber, R [1 ]
机构
[1] KONRAD ZUSE ZENTRUM BERLIN,D-10711 BERLIN,GERMANY
关键词
adaptive finite-element methods; a posteriori error estimates;
D O I
10.1137/0733059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let u is an element of H be the exact solution of a given selfadjoint elliptic boundary value problem, which is approximated by some (u) over tilde is an element of S, S being a suitable finite-element space. Efficient and reliable a posteriori estimates of the error \\u - (u) over tilde\\, measuring the (local) quality of (u) over tilde, play a crucial role in termination criteria and in the adaptive refinement of the underlying mesh. A wed-known class of error estimates can be derived systematically by localizing the discretized defect problem by using domain decomposition techniques. In this paper, we provide a guideline for the theoretical analysis of such error estimates. We further clarify the relation to other concepts. Our analysis leads to new error estimates, which are specially suited to three space dimensions. The theoretical results are illustrated by numerical computations.
引用
收藏
页码:1188 / 1204
页数:17
相关论文
共 20 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[4]   A POSTERIORI ERROR-ESTIMATES BASED ON HIERARCHICAL BASES [J].
BANK, RE ;
SMITH, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :921-935
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]   ADAPTIVE MULTILEVEL METHODS IN 3 SPACE DIMENSIONS [J].
BORNEMANN, F ;
ERDMANN, B ;
KORNHUBER, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (18) :3187-3203
[7]  
Bornemann F. A., 1992, Impact of Computing in Science and Engineering, V4, P1, DOI 10.1016/0899-8248(92)90015-Z
[8]  
Deuflhard P., 1989, Impact of Computing in Science and Engineering, V1, P3, DOI 10.1016/0899-8248(89)90018-9
[9]  
ERDMANN B, 1991, 911 TR KONR ZUS ZENT
[10]  
ERDMANN B, 1993, 935 TR KONR ZUS ZENT