Two-qubit copying machine for economical quantum eavesdropping

被引:109
作者
Niu, CS [1 ]
Griffiths, RB [1 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.60.2764
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the mapping that occurs when a single qubit in an arbitrary state interacts with another qubit in a given, fixed state resulting in some unitary transformation on the two qubit system that, in effect, makes two copies of the first qubit. The general problem of the quality of the resulting copies is discussed using a special representation, a generalization of the usual Schmidt decomposition, of an arbitrary two-dimensional subspace of a tensor product of two two-dimensional Hilbert spaces. We exhibit quantum circuits that can reproduce the results of any two-qubit copying: machine of this type. A simple stochastic generalization (using a classical random signal) of the copying machine is also considered. These copying machines provide simple embodiments of previously proposed optimal eavesdropping schemes for the BB84 and B92 quantum cryptography protocols. [S1050-2947(99)04510-2].
引用
收藏
页码:2764 / 2776
页数:13
相关论文
共 18 条
[1]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[2]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   QUANTUM CRYPTOGRAPHY [J].
BENNETT, CH ;
BRASSARD, G ;
EKERT, AK .
SCIENTIFIC AMERICAN, 1992, 267 (04) :50-57
[5]   Teleportation as a quantum computation [J].
Brassard, G ;
Braunstein, SL ;
Cleve, R .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) :43-47
[6]   Optimal universal and state-dependent quantum cloning [J].
Bruss, D ;
DiVincenzo, DP ;
Ekert, A ;
Fuchs, CA ;
Macchiavello, C ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (04) :2368-2378
[7]  
DIVINCENZO D, COMMUNICATION
[8]   Quantum-state disturbance versus information gain: Uncertainty relations for quantum information [J].
Fuchs, CA ;
Peres, A .
PHYSICAL REVIEW A, 1996, 53 (04) :2038-2045
[9]   Optimal eavesdropping in quantum cryptography .1. Information bound and optimal strategy [J].
Fuchs, CA ;
Gisin, N ;
Griffiths, RB ;
Niu, CS ;
Peres, A .
PHYSICAL REVIEW A, 1997, 56 (02) :1163-1172
[10]  
Fuchs CA, 1998, FORTSCHR PHYS, V46, P535, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<535::AID-PROP535>3.0.CO