Theory of differential offset continuation

被引:26
作者
Fomel, S [1 ]
机构
[1] Univ Texas, Bur Econ Geol, Univ Stn, Austin, TX 78713 USA
关键词
D O I
10.1190/1.1567242
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
I introduce a partial differential equation to describe the process of prestack reflection data transformation in the offset, midpoint, and time coordinates. The equation is proved theoretically to provide correct kinematics and amplitudes on the transformed constant-offset sections. Solving an initial-value problem with the proposed equation leads to integral and frequency-domain offset continuation operators, which reduce to the known forms of dip moveout operators in the case of continuation to zero offset.
引用
收藏
页码:718 / 732
页数:15
相关论文
共 53 条
[1]  
Babich V. M., 1991, SHORT WAVELENGTH DIF
[2]   2-D continuation operators and their applications [J].
Bagaini, C ;
Spagnolini, U .
GEOPHYSICS, 1996, 61 (06) :1846-1858
[3]  
Bagaini C., 1993, 63 ANN INT M SOC EXP, V12, P673, DOI DOI 10.1190/1.1822585
[4]  
BALE R, 1987, 57 ANN INT M SOC EXP
[6]   Azimuth moveout for 3-D prestack imaging [J].
Biondi, B ;
Fomel, S ;
Chemingui, N .
GEOPHYSICS, 1998, 63 (02) :574-588
[7]  
Biondi B, 1994, 64 ANN INT M SOC EXP, P1541, DOI [10.1190/1.1822833, DOI 10.1190/1.1822833]
[8]   TRUE-AMPLITUDE IMAGING AND DIP MOVEOUT [J].
BLACK, JL ;
SCHLEICHER, KL ;
ZHANG, L .
GEOPHYSICS, 1993, 58 (01) :47-66
[9]  
Bleistein N, 2000, GEOPHYS PROSPECT, V48, P135
[10]  
Bleistein N., 2001, Mathematics of Multidimensional Seismic Imaging, Migration and Inversion