Identification of the 2-methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate-producing strain Burkholderia sacchari IPT101T and analysis of a mutant accumulating a copolyester with higher 3-hydroxyvalerate content

被引:41
作者
Brämer, CO
Silva, LF
Gomez, JGC
Priefert, H
Steinbüchel, A
机构
[1] Univ Munster, Inst Mikrobiol, D-48149 Munster, Germany
[2] Inst Pesquisas Tecnol Estado Sao Paulo SA, Agrupamento Biotecnol, BR-05508901 Sao Paulo, Brazil
关键词
D O I
10.1128/AEM.68.1.271-279.2002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Burkholderia sacchari IPT101(T) induced the formation of 2-methylcitrate synthase and 2-methylisocitrate lyase when it was cultivated in the presence of propionic acid. The prp locus of B. sacchari IPT101(T) is required for utilization of propionic acid as a sole carbon source and is relevant for incorporation of 3-hydroxyvalerate (3HV) into copolyesters, and it was cloned and sequenced. Five genes (prpR, prpB, prpC, acnM, and ORF5) exhibited identity to genes located in the prp loci of other gram-negative bacteria. prpC encodes a 2-methylcitrate synthase with a calculated molecular mass of 42,691 Da. prpB encodes a 2-methylisocitrate lyase. The levels of PrpC and PrpB activity were much lower in propionate-negative mutant IPT189 obtained from IPT101T and were heterologously expressed in Escherichia coli. The acnM gene (ORF4) and ORF5, which are required for conversion of 2-methylcitric acid to 2-methylisocitric acid in Ralstonia eutropha HF39, are also located in the prp locus. The translational product of ORFI (prpR) had a calculated molecular mass of 70,598 Da and is a putative regulator of the prp cluster. Three additional open reading frames (ORF6, ORF7, and ORF8) whose functions are not known were located adjacent to ORF5 in the prp locus of B. sacchari, and these open reading frames have not been found in any other prp operon yet. In summary, the organization of the prp genes of B. sacchari is similar but not identical to the organization of these genes in other bacteria investigated recently. In addition, this study provided a rationale for the previously shown increased molar contents of 3HV in copolyesters accumulated by a B. sacchari mutant since it was revealed in this study that the mutant is defective in prpC.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 57 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Ausubel FM, 1995, SHORT PROTOCOLS MOL
[3]   The PROSITE database, its status in 1997 [J].
Bairoch, A ;
Bucher, P ;
Hofmann, K .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :217-221
[4]  
BIRNBOIM HC, 1979, NUCLEIC ACIDS RES, V7, P1513
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]  
Brämer CO, 2001, MICROBIOL-SGM, V147, P2203, DOI 10.1099/00221287-147-8-2203
[8]   Burkholderia sacchari sp nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil [J].
Brämer, CO ;
Vandamme, P ;
da Silva, LF ;
Gomez, JGC ;
Steinbüchel, A .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :1709-1713
[9]   2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans -: Characterization and comparison of both enzymes [J].
Brock, M ;
Darley, D ;
Textor, S ;
Buckel, W .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (12) :3577-3586
[10]   Methylcitrate synthase from Aspergillus nidulans:: implications for propionate as an antifungal agent [J].
Brock, M ;
Fischer, R ;
Linder, D ;
Buckel, W .
MOLECULAR MICROBIOLOGY, 2000, 35 (05) :961-973