Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy

被引:176
作者
Dasgupta, Jyotishman [2 ]
Frontiera, Renee R. [2 ]
Taylor, Keenan C. [1 ]
Lagarias, J. Clark [1 ]
Mathies, Richard A. [2 ]
机构
[1] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
photochemistry; photoisomerization; photosensory proteins; plant signal transduction; time-resolved vibrational spectroscopy; RESONANCE RAMAN; RECOMBINANT PHYTOCHROME; PHOTOTRANSFORMATION; PHOTOCHEMISTRY; STEPS; PR;
D O I
10.1073/pnas.0812056106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photochemical interconversion between the red-absorbing (P-r) and the far-red-absorbing (P-fr) forms of the photosensory protein phytochrome initiates signal transduction in bacteria and higher plants. The P-r-to-P-fr transition commences with a rapid Z-to-E photoisomerization at the C-15=C-16 methine bridge of the bilin prosthetic group. Here, we use femtosecond stimulated Raman spectroscopy to probe the structural changes of the phycocyanobilin chromophore within phytochrome Cph1 on the ultrafast time scale. The enhanced intensity of the C-15-H hydrogen out-of-plane (HOOP) mode, together with the appearance of red-shifted C=C stretch and N-H in-plane rocking modes within 500 fs, reveal that initial distortion of the C-15=C-16 bond occurs in the electronically excited I* intermediate. From I*, 85% of the excited population relaxes back to P-r in 3 ps, whereas the rest goes on to the Lumi-R photoproduct consistent with the 15% photochemical quantum yield. The C-15-H HOOP and skeletal modes evolve to a Lumi-R-like pattern after 3 ps, thereby indicating that the C-15=C-16 Z-to-E isomerization occurs on the excited-state surface.
引用
收藏
页码:1784 / 1789
页数:6
相关论文
共 29 条
[1]   Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues [J].
Andel, F ;
Murphy, JT ;
Haas, JA ;
McDowell, MT ;
van der Hoef, I ;
Lugtenburg, J ;
Lagarias, JC ;
Mathies, RA .
BIOCHEMISTRY, 2000, 39 (10) :2667-2676
[2]  
Andel F, 1997, BIOSPECTROSCOPY, V3, P421, DOI 10.1002/(SICI)1520-6343(1997)3:6<421::AID-BSPY1>3.0.CO
[3]  
2-3
[4]   First steps in the phytochrome phototransformation:: A comparative femtosecond study on the forward (Pr → Pfr) and back reaction (Pfr → Pr) [J].
Bischoff, M ;
Hermann, G ;
Rentsch, S ;
Strehlow, D .
BIOCHEMISTRY, 2001, 40 (01) :181-186
[5]   Relative ground and excited-state pKa values of phytochromobilin in the photoactivation of phytochrome:: A computational study [J].
Borg, O. Anders ;
Durbeej, Bo .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (39) :11554-11565
[6]   The structure of a complete phytochrome sensory module in the Pr ground state [J].
Essen, Lars-Oliver ;
Mailliet, Jo ;
Hughes, Jon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14709-14714
[7]   Harnessing phytochrome's glowing potential [J].
Fischer, AJ ;
Lagarias, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (50) :17334-17339
[8]   RESONANCE RAMAN ANALYSIS OF THE PR AND PFR FORMS OF PHYTOCHROME [J].
FODOR, SPA ;
LAGARIAS, JC ;
MATHIES, RA .
BIOCHEMISTRY, 1990, 29 (50) :11141-11146
[9]   Genetic engineering of phytochrome biosynthesis in bacteria [J].
Gambetta, GA ;
Lagarias, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10566-10571
[10]  
Gärtner W, 2003, COMP SER PHOTOCHEM, V3, P136