Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles

被引:278
作者
Gade, A. K. [1 ]
Bonde, P. [1 ]
Ingle, A. P. [1 ]
Marcato, P. D. [2 ]
Duran, N. [2 ,3 ]
Rai, M. K. [1 ]
机构
[1] SGB Amravati Univ, Dept Biotechnol, Amravati 444602, MS State, India
[2] Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil
[3] Univ Mogi das Cruzes, NCA, Mogi Das Cruzes, SP, Brazil
关键词
Silver Nanoparticles; Extracellular; Aspergillus niger; Synthesis; Exploitation;
D O I
10.1166/jbmb.2008.401
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Extracellular biosynthesis of silver nanoparticles by Aspergillus niger isolated from soil is being reported in the present paper. The production of silver nanoparticles was evidenced by UV-vis spectrum, showing the absorbance at 420 nm (Perkin Elmer Lambda-25). The nanoparticles characterized by Transmission Electron Microscopy exhibited spherical silver nanoparticles with diameter of around 20 nm. Elemental Spectroscopy imaging showed the presence of fungal protein around the silver nanoparticles thereby increasing their stability in the suspension. The silver nanoparticles (10 mu g/ml) showed remarkable antibacterial activity against gram-positive (Staphylococcus. aureus) and gram-negative (Escherichia coli) bacteria. The reduction of the silver ions might have occurred by a nitrate-dependent reductase enzyme and a shuttle quinone extracellular process. Reduction of silver ions was an extracellular and rapid process; this knowledge may lead to the development of an easy process for biosynthesis of the silver nanoparticles. Potential of fungal-mediated biosynthesis of silver nanoparticles is important for development of effective antibacterial agents showing resistance to drugs available in the market.
引用
收藏
页码:243 / 247
页数:5
相关论文
共 44 条
[1]   Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species [J].
Ahmad, A ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Ramani, R ;
Srinivas, V ;
Sastry, M .
NANOTECHNOLOGY, 2003, 14 (07) :824-828
[2]   Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Mandal, D ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (41) :12108-12109
[3]  
AHMAD A, 2006, BIOSYNTHESIS SILVER, P291
[4]   Proteomic approach to understanding antibiotic action [J].
Bandow, JE ;
Brötz, H ;
Leichert, LIO ;
Labischinski, H ;
Hecker, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (03) :948-955
[5]   Fungus-mediated biosynthesis of silica and titania particles [J].
Bansal, V ;
Rautaray, D ;
Bharde, A ;
Ahire, K ;
Sanyal, A ;
Ahmad, A ;
Sastry, M .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (26) :2583-2589
[6]   Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum [J].
Bansal, V ;
Rautaray, D ;
Ahmad, A ;
Sastry, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3303-3305
[7]  
Beveridge TJ, 1997, ADV MICROB PHYSIOL, V38, P177
[8]   Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus [J].
Bfilainsa, KC ;
D'Souza, SF .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 47 (02) :160-164
[9]   Nanotechnology and potential of microorganisms [J].
Bhattacharya, D ;
Gupta, RK .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2005, 25 (04) :199-204
[10]  
BROCCHI M, 2007, J NANOSCI N IN PRESS