A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells

被引:241
作者
Nam, JH [1 ]
Jeon, DH [1 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151744, South Korea
关键词
fuel cell; SOFC (solid oxide fuel cell); PEN (positive electrode/electrolyte/negative electrode); micro-scale model; TPB (three phase boundary);
D O I
10.1016/j.electacta.2005.09.041
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A comprehensive model for detailed description of micro-scale transport and electro-chemical reaction in intermediate temperature SOFCs (solid oxide fuel cells) was developed by combining many relevant theoretical and experimental researches. Dependence of electro-chemical performance of PEN (positive electrode/electrolyte/negative electrode) on micro-structural parameters of electrodes was investigated through numerical simulation. Spatial distribution of transfer current density confirmed that TPBs (three phase boundaries) at electrode/electrolyte interface were most active for electro-chemical reaction and its contribution to overall reaction increased at higher current densities. Spatial gradient of total pressure in cathode was found to facilitate oxygen transport while that in anode hinder hydrogen transport. Among various micro-structural parameters for electrodes, particle diameter was found to be the most important one that governs the PEN performance; smaller particle diameter decreased activation overpotential with larger TPB length, while increasing mass transport resistance and concentration overpotential with smaller pore diameter. The proposed micro-model was found successful in micro-structural characterization of PEN performance, and thus believed to serve as a bridge connecting micro-scale models and macro-scale calculations. (c) 2005 Published by Elsevier Ltd.
引用
收藏
页码:3446 / 3460
页数:15
相关论文
共 45 条
[1]   Correlated resistor network study of porous solid oxide fuel cell anodes [J].
Abel, J ;
Kornyshev, AA ;
Lehnert, W .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4253-4259
[2]   Electrical properties of Ni/YSZ cermets obtained through combustion synthesis [J].
Anselmi-Tamburini, U ;
Chiodelli, G ;
Arimondi, M ;
Maglia, F ;
Spinolo, G ;
Munir, ZA .
SOLID STATE IONICS, 1998, 110 (1-2) :35-43
[3]   Reaction mechanism of Ni pattern anodes for solid oxide fuel cells [J].
Bieberle, A ;
Gauckler, LJ .
SOLID STATE IONICS, 2000, 135 (1-4) :337-345
[4]   The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes [J].
Bieberle, A ;
Meier, LP ;
Gauckler, LJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :A646-A656
[5]  
Bird R B., 2002, Transportphenomena
[6]   RELATION BETWEEN PERCOLATION AND PARTICLE COORDINATION IN BINARY POWDER MIXTURES [J].
BOUVARD, D ;
LANGE, FF .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (12) :3083-3090
[7]   Cathode micromodel of solid oxide fuel cell [J].
Chan, SH ;
Chen, XJ ;
Khor, KA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A164-A172
[8]   Anode micro model of solid oxide fuel cell [J].
Chan, SH ;
Xia, ZT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A388-A394
[9]   Simulation of a composite cathode in solid oxide fuel cells [J].
Chen, XJ ;
Chan, SH ;
Khor, KA .
ELECTROCHIMICA ACTA, 2004, 49 (11) :1851-1861
[10]   Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach [J].
Costamagna, P ;
Panizza, M ;
Cerisola, G ;
Barbucci, A .
ELECTROCHIMICA ACTA, 2002, 47 (07) :1079-1089