Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae:: Functional roles of Rox1 and other factors in mediating the anoxic response

被引:194
作者
Kwast, KE
Lai, LC
Menda, N
James, DT
Aref, S
Burke, PV
机构
[1] Univ Illinois, Dept Mol & Inegrat Physiol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Stat, Urbana, IL 61801 USA
关键词
D O I
10.1128/JB.184.1.250-265.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
DNA arrays were used to investigate the functional role of Rox1 in mediating acclimatization to anaerobic conditions in Saccharomyces cerevisiae. Multiple growth conditions for wild-type and rox1 null strains were used to identify open reading frames with a statistically robust response to this repressor. These results were compared to those obtained for a wild-type strain in response to oxygen availability. Transcripts of nearly one-sixth of the genome were differentially expressed (P < 0.05) with respect to oxygen availability, the majority (> 65%) being down-regulated under anoxia. Of the anaerobically induced genes, about one-third (106) contain putative Rox1-binding sites in their promoters and were significantly (P < 0.05) up-regulated in the rox1 null strains under aerobiosis. Additional promoter searches revealed that nearly one-third of the anaerobically induced genes contain an AR1 site(s) for the Upc2 transcription factor, suggesting that Upc2 and Rox1 regulate the majority of anaerobically induced genes in S. cerevisiae. Functional analyses indicate that a large fraction of the anaerobically induced genes are involved in cell stress (similar to1/3), cell wall maintenance (similar to1/8), carbohydrate metabolism (similar to1/10), and lipid metabolism (similar to1/12), with both Rox1 and Upc2 predominating in the regulation of this latter group and Upc2 predominating in cell wail maintenance. Mapping the changes in expression of functional regulons onto metabolic pathways has provided novel insight into the role of Rox1 and other trans-acting factors in mediating the physiological response of S. cerevisiae to anaerobic conditions.
引用
收藏
页码:250 / 265
页数:16
相关论文
共 87 条
[1]   Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae [J].
Abramova, N ;
Sertil, O ;
Mehta, S ;
Lowry, CV .
JOURNAL OF BACTERIOLOGY, 2001, 183 (09) :2881-2887
[2]  
Abramova NE, 2001, GENETICS, V157, P1169
[3]   Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J].
Alexandre, H ;
Ansanay-Galeote, V ;
Dequin, S ;
Blondin, B .
FEBS LETTERS, 2001, 498 (01) :98-103
[4]   ANAEROBIC NUTRITION OF SACCHAROMYCES CEREVISIAE .2. UNSATURATED FATTY ACID REQUIREMENT FOR GROWTH IN A DEFINED MEDIUM [J].
ANDREASEN, AA ;
STIER, TJB .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1954, 43 (03) :271-281
[5]   ANAEROBIC NUTRITION OF SACCHAROMYCES CEREVISIAE .1. ERGOSTEROL REQUIREMENT FOR GROWTH IN A DEFINED MEDIUM [J].
ANDREASEN, AA ;
STIER, TJB .
JOURNAL OF CELLULAR AND COMPARATIVE PHYSIOLOGY, 1953, 41 (01) :23-36
[6]  
[Anonymous], BIOSYNTHESIS HEME CO
[7]   The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J].
Ansell, R ;
Granath, K ;
Hohmann, S ;
Thevelein, JM ;
Adler, L .
EMBO JOURNAL, 1997, 16 (09) :2179-2187
[8]   Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae [J].
Athenstaedt, K ;
Zweytick, D ;
Jandrositz, A ;
Kohlwein, SD ;
Daum, G .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6441-6448
[9]   THE ROX1 REPRESSOR OF THE SACCHAROMYCES-CEREVISIAE HYPOXIC GENES IS A SPECIFIC DNA-BINDING PROTEIN WITH A HIGH-MOBILITY-GROUP MOTIF [J].
BALASUBRAMANIAN, B ;
LOWRY, CV ;
ZITOMER, RS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6071-6078
[10]   Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins [J].
Barz, WP ;
Walter, P .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (04) :1043-1059