The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis

被引:202
作者
Beekwilder, Jules [1 ]
van Leeuwen, Wessel [2 ]
van Dam, Nicole M. [3 ]
Bertossi, Monica [4 ]
Grandi, Valentina [4 ]
Mizzi, Luca [5 ]
Soloviev, Mikhail [6 ]
Szabados, Laszlo [7 ]
Molthoff, Jos W. [1 ]
Schipper, Bert [1 ]
Verbocht, Hans [1 ]
de Vos, Ric C. H. [1 ]
Morandini, Piero [4 ]
Aarts, Mark G. M. [2 ]
Bovy, Arnaud [1 ]
机构
[1] Plant Res Int, Wageningen, Netherlands
[2] Wageningen Univ, Lab Genet, Wageningen, Netherlands
[3] Netherlands Inst Ecol, Heteren, Netherlands
[4] Univ Milan, CNR Biophys Inst, Dept Biol, Milan, Italy
[5] Univ Milan, CNR Biophys Inst, Dept Biomol Sci & Biotechnol, Milan, Italy
[6] Royal Holloway Univ London, Sch Biol Sci, Egham, Surrey, England
[7] Biol Res Ctr, Szeged, Hungary
来源
PLOS ONE | 2008年 / 3卷 / 04期
关键词
D O I
10.1371/journal.pone.0002068
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.
引用
收藏
页数:12
相关论文
共 35 条
[1]   A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae [J].
Agrawal, AA ;
Kurashige, NS .
JOURNAL OF CHEMICAL ECOLOGY, 2003, 29 (06) :1403-1415
[2]   Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense [J].
Barth, C ;
Jander, G .
PLANT JOURNAL, 2006, 46 (04) :549-562
[3]   Positive selection driving diversification in plant secondary metabolism [J].
Benderoth, Markus ;
Textor, Susanne ;
Windsor, Aaron J. ;
Mitchell-Olds, Thomas ;
Gershenzon, Jonathan ;
Kroymann, Juergen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9118-9123
[4]   Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J].
Brown, PD ;
Tokuhisa, JG ;
Reichelt, M ;
Gershenzon, J .
PHYTOCHEMISTRY, 2003, 62 (03) :471-481
[5]   The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis [J].
Celenza, JL ;
Quiel, JA ;
Smolen, GA ;
Merrikh, H ;
Silvestro, AR ;
Normanly, J ;
Bender, J .
PLANT PHYSIOLOGY, 2005, 137 (01) :253-262
[6]   Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry [J].
De Vos, Ric C. H. ;
Moco, Sofia ;
Lommen, Arjen ;
Keurentjes, Joost J. B. ;
Bino, Raoul J. ;
Hall, Robert D. .
NATURE PROTOCOLS, 2007, 2 (04) :778-791
[7]   The chemical diversity and distribution of glucosinolates and isothiocyanates among plants [J].
Fahey, JW ;
Zalcmann, AT ;
Talalay, P .
PHYTOCHEMISTRY, 2001, 56 (01) :5-51
[8]   HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana [J].
Gigolashvili, Tamara ;
Engqvist, Martin ;
Yatusevich, Ruslan ;
Mueller, Caroline ;
Fluegge, Ulf-Ingo .
NEW PHYTOLOGIST, 2008, 177 (03) :627-642
[9]   The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana [J].
Gigolashvili, Tamara ;
Yatusevich, Ruslan ;
Berger, Bettina ;
Mueller, Caroline ;
Fluegge, Ulf-Ingo .
PLANT JOURNAL, 2007, 51 (02) :247-261
[10]   The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana [J].
Gigolashvili, Tamara ;
Berger, Bettina ;
Mock, Hans-Peter ;
Mueller, Caroline ;
Weisshaar, Bernd ;
Fluegge, Ulf-Ingo .
PLANT JOURNAL, 2007, 50 (05) :886-901