Distinguishing true from false positives in genomic studies: p values

被引:33
作者
Broer, Linda [1 ]
Lill, Christina M. [2 ,3 ]
Schuur, Maaike [4 ]
Amin, Najaf [1 ]
Roehr, Johannes T. [2 ]
Bertram, Lars [2 ]
Ioannidis, John P. A. [5 ,6 ,7 ,8 ]
van Duijn, Cornelia M. [1 ]
机构
[1] Erasmus Univ, Dept Epidemiol, Med Ctr Rotterdam, NL-3000 CA Rotterdam, Netherlands
[2] Max Planck Inst Mol Genet, Dept Vertebrate Genom, Neuropsychiat Genet Grp, D-14195 Berlin, Germany
[3] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Neurol, D-55122 Mainz, Germany
[4] Erasmus Univ, Dept Neurol, Med Ctr Rotterdam, NL-3000 CA Rotterdam, Netherlands
[5] Stanford Prevent Res Ctr, Dept Med, Stanford, CA USA
[6] Stanford Univ, Sch Med, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Stat, Sch Humanities & Sci, Stanford, CA 94305 USA
[8] Univ Ioannina, Sch Med, Dept Hyg & Epidemiol, GR-45110 Ioannina, Greece
关键词
Venice Criteria; Significance thresholds; -Omics; Alzheimer's disease; GENETIC ASSOCIATION; ALZHEIMER-DISEASE; METAANALYSES;
D O I
10.1007/s10654-012-9755-x
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Distinguishing true from false positive findings is a major challenge in human genetic epidemiology. Several strategies have been devised to facilitate this, including the positive predictive value (PPV) and a set of epidemiological criteria, known as the "Venice" criteria. The PPV measures the probability of a true association, given a statistically significant finding, while the Venice criteria grade the credibility based on the amount of evidence, consistency of replication and protection from bias. A vast majority of journals use significance thresholds to identify the true positive findings. We studied the effect of p value thresholds on the PPV and used the PPV and Venice criteria to define usable thresholds of statistical significance. Theoretical and empirical analyses of data published on AlzGene show that at a nominal p value threshold of 0.05 most "positive" findings will turn out to be false if the prior probability of association is below 0.10 even if the statistical power of the study is higher than 0.80. However, in underpowered studies (0.25) with a low prior probability of 1 x 10(-3), a p value of 1 x 10(-5) yields a high PPV (> 96 %). Here we have shown that the p value threshold of 1 x 10(-5) gives a very strong evidence of association in almost all studies. However, in the case of a very high prior probability of association (0.50) a p value threshold of 0.05 may be sufficient, while for studies with very low prior probability of association (1 x 10(-4); genome-wide association studies for instance) 1 x 10(-7) may serve as a useful threshold to declare significance.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 30 条
[1]   Genetic association studies of complex neurological diseases [J].
Abou-Sleiman, P. M. ;
Hanna, M. G. ;
Wood, N. W. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2006, 77 (12) :1302-1304
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database [J].
Bertram, Lars ;
McQueen, Matthew B. ;
Mullin, Kristina ;
Blacker, Deborah ;
Tanzi, Rudolph E. .
NATURE GENETICS, 2007, 39 (01) :17-23
[4]  
Boseley S., 2006, GUARDIAN
[5]   METAANALYSIS IN CLINICAL-TRIALS [J].
DERSIMONIAN, R ;
LAIRD, N .
CONTROLLED CLINICAL TRIALS, 1986, 7 (03) :177-188
[6]  
Farrer LA, 1997, JAMA-J AM MED ASSOC, V278, P1349, DOI 10.1001/jama.1997.03550160069041
[7]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796
[8]   CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES, BONFERRONI AND STABILITY OF MULTIPLE TESTING [J].
Gordon, Alexander ;
Glazko, Galina ;
Qiu, Xing ;
Yakovlev, Andrei .
ANNALS OF APPLIED STATISTICS, 2007, 1 (01) :179-190
[9]   A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints [J].
Harbord, Roger M. ;
Egger, Matthias ;
Sterne, Jonathan A. C. .
STATISTICS IN MEDICINE, 2006, 25 (20) :3443-3457
[10]   Measuring inconsistency in meta-analyses [J].
Higgins, JPT ;
Thompson, SG ;
Deeks, JJ ;
Altman, DG .
BMJ-BRITISH MEDICAL JOURNAL, 2003, 327 (7414) :557-560