Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs

被引:74
作者
Bauer, D [1 ]
Deistler, M [1 ]
Scherrer, W [1 ]
机构
[1] Vienna Univ Technol, Inst Okonometrie Operat Res & Syst Theorie, A-1040 Vienna, Austria
关键词
subspace methods; identification; asymptotic analysis; discrete time systems; linear multivariable systems; state-space systems;
D O I
10.1016/S0005-1098(99)00031-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear systems with unobserved white noise inputs are considered. A class of subspace estimates for the system matrices obtained by estimating the state in the first step is analyzed. The main result presented here states asymptotic normality of subspace estimates. In addition, a consistency result for the system matrix estimates is given. An algorithm to compute the asymptotic variances of the estimates is presented. In a final section the implications of the result are discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1243 / 1254
页数:12
相关论文
共 22 条
[1]   MARKOVIAN REPRESENTATION OF STOCHASTIC-PROCESSES BY CANONICAL VARIABLES [J].
AKAIKE, H .
SIAM JOURNAL ON CONTROL, 1975, 13 (01) :162-173
[2]  
ANDERSON TW, 1971, STAET ANAL TIME SERI
[3]  
Bauer D., 1997, P SYSID 97, P1087
[4]  
BAUER D, 1998, THESIS TU WEIN
[5]  
CHATELIN F., 1983, Spectral Approximation of Linear Operators
[6]   Consistency and relative efficiency of subspace methods [J].
Deistler, M ;
Peternell, K ;
Scherrer, W .
AUTOMATICA, 1995, 31 (12) :1865-1875
[7]   A REALIZATION APPROACH TO STOCHASTIC-MODEL REDUCTION [J].
DESAI, UB ;
PAL, D ;
KIRKPATRICK, RD .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 42 (04) :821-838
[8]   STRUCTURE AND ORDER ESTIMATION OF MULTIVARIABLE STOCHASTIC-PROCESSES [J].
FUCHS, JJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (12) :1338-1341
[9]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193
[10]  
Golub G.H., 1996, Matrix Computations, Vthird