Force microscopy of nonadherent cells: A comparison of leukemia cell deformability

被引:396
作者
Rosenbluth, MJ
Lam, WA
Fletcher, DA
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Pediat, Div Pediat Hematol Oncol, San Francisco, CA 94143 USA
[3] Univ Calif Berkeley, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1529/biophysj.105.067496
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Atomic force microscopy (AFM) has become an important tool for quantifying mechanical properties of biological materials ranging from single molecules to cells and tissues. Current AFM techniques for measuring elastic and viscoelastic properties of whole cells are based on indentation of cells firmly adhered to a substrate, but these techniques are not appropriate for probing nonadherent cells, such as passive human leukocytes, due to a lateral instability of the cells under load. Here we present a method for characterizing nonadherent cells with AFM by mechanically immobilizing them in microfabricated wells. We apply this technique to compare the deformability of human myeloid and lymphoid leukemia cells and neutrophils at low deformation rates, and we find that the cells are well described by an elastic model based on Hertzian mechanics. Myeloid (HL60) cells were measured to be a factor of 18 times stiffer than lymphoid (Jurkat) cells and six times stiffer than human neutrophils on average (E-infinity = 855 +/- 670 Pa for HL60 cells, E-infinity = 48 +/- 35 Pa for Jurkat cells, E-infinity 156 +/- 87 for neutrophils, mean +/- SD). This work demonstrates a simple method for extending AFM mechanical property measurements to nonadherent cells and characterizes properties of human leukemia cells that may contribute to leukostasis, a complication associated with acute leukemia.
引用
收藏
页码:2994 / 3003
页数:10
相关论文
共 55 条
[1]   Microrheology of human lung epithelial cells measured by atomic force microscopy [J].
Alcaraz, J ;
Buscemi, L ;
Grabulosa, M ;
Trepat, X ;
Fabry, B ;
Farré, R ;
Navajas, D .
BIOPHYSICAL JOURNAL, 2003, 84 (03) :2071-2079
[2]   Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis [J].
Alexopoulos, LG ;
Haider, MA ;
Vail, TP ;
Guilak, F .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (03) :323-333
[3]  
BAST RC, 2000, CANC MED
[4]   REGULAR PYRAMID PUNCH PROBLEM [J].
BILODEAU, GG .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (03) :519-523
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   Single-cell elastography: Probing for disease with the atomic force microscope [J].
Costa, KD .
DISEASE MARKERS, 2003, 19 (2-3) :139-154
[7]   Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy [J].
Costa, KD ;
Yin, FCP .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1999, 121 (05) :462-471
[8]   Biological methods for cell-cycle synchronization of mammalian cells [J].
Davis, PK ;
Ho, A ;
Dowdy, SF .
BIOTECHNIQUES, 2001, 30 (06) :1322-+
[9]   Determination of elastic moduli of thin layers of soft material using the atomic force microscope [J].
Dimitriadis, EK ;
Horkay, F ;
Maresca, J ;
Kachar, B ;
Chadwick, RS .
BIOPHYSICAL JOURNAL, 2002, 82 (05) :2798-2810
[10]   Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy [J].
Domke, J ;
Dannöhl, S ;
Parak, WJ ;
Müller, O ;
Aicher, WK ;
Radmacher, M .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2000, 19 (04) :367-379