Sparse models for gender classification

被引:16
作者
Costen, NP [1 ]
Brown, M [1 ]
Akamatsu, S [1 ]
机构
[1] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M1 5GD, Lancs, England
来源
SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS | 2004年
关键词
D O I
10.1109/AFGR.2004.1301531
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A class of sparse regularization functions are considered for the developing sparse classifiers for determining facial gender The sparse classification method aims to both select the most important features and maximize the classification margin, in a manner similar to support vector machines. An efficient process for directly calculating the complete set of optimal, sparse classifiers is developed. A single classification hyper-plane which maximizes posterior probability of describing training data is then efficiently selected. The classifier is tested on a Japanese gender-divided ensemble, described via a collection of appearance models. Performance is comparable with a linear SVM, and allows effective manipulation of apparent gender.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 16 条
[1]  
Bradley P. S., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P82
[2]  
BROWN M, 2003, INT WORKSH ART NEUR
[3]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]  
Cootes T., 1998, Proc. ECCV, V2, P484
[6]  
Edelman Betty, 1998, Journal of Biological Systems, V6, P241, DOI 10.1142/S0218339098000170
[7]  
EDWARDS GJ, 1997, BRIT MACH VIS C, P130
[8]  
FIGUEIREDO MAT, 2002, ADV NEURAL INFORMATI, V14, P705
[9]  
GOLOMB BA, 1991, NIPS 3, P572
[10]   Support vector machines for face recognition [J].
Guo, GD ;
Li, SZ ;
Chan, KL .
IMAGE AND VISION COMPUTING, 2001, 19 (9-10) :631-638