Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110):: A density functional theory study on the intrinsic role of water

被引:242
作者
Liu, LM
McAllister, B
Ye, HQ
Hu, P [1 ]
机构
[1] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Queens Univ Belfast, Sch Chem, Belfast BT9 5AG, Antrim, North Ireland
关键词
D O I
10.1021/ja056801p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Au catalysis has been one of the hottest topics in chemistry in the last 10 years or so. How O-2 is supplied and what role water plays in CO oxidation are the two challenging issues in the field at the moment. In this study, using density functional theory we show that these two issues are in fact related to each other. The following observations are revealed: (i) water that can dissociate readily into OH groups can facilitate O-2 adsorption on TiO2; (ii) the effect of OH group on the O-2 adsorption is surprisingly long-ranged; and (iii) O-2 can also diffuse along the channel of Ti (5c) atoms on TiO2(1 10), and this may well be the rate-limiting step for the CO oxidation. We provide direct evidence that O-2 is supplied by O-2 adsorption on TiO2 in the presence of OH and can diffuse to the interface of Au/TiO2 to participate in CO oxidation. Furthermore, the physical origin of the water effects on Au catalysis has been identified by electronic structure analyses: There is a charge transfer from TiO2 in the presence of OH to O-2, and the O-2 adsorption energy depends linearly on the 02 charge. These results are of importance to understand water effects in general in heterogeneous catalysis.
引用
收藏
页码:4017 / 4022
页数:6
相关论文
共 72 条
[1]   CO oxidation on Pt(111): An ab initio density functional theory study [J].
Alavi, A ;
Hu, PJ ;
Deutsch, T ;
Silvestrelli, PL ;
Hutter, J .
PHYSICAL REVIEW LETTERS, 1998, 80 (16) :3650-3653
[2]   Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution [J].
Arrii, S ;
Morfin, F ;
Renouprez, AJ ;
Rousset, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (04) :1199-1205
[3]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[4]   The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110) [J].
Bondzie, VA ;
Parker, SC ;
Campbell, CT .
CATALYSIS LETTERS, 1999, 63 (3-4) :143-151
[5]   Oxygen adsorption on well-defined gold particles on TiO2(110) [J].
Bondzie, VA ;
Parker, SC ;
Campbell, CT .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04) :1717-1720
[6]   Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters [J].
Bongiorno, A ;
Landman, U .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[7]   Surface science - Catalysts under pressure [J].
Campbell, CT .
SCIENCE, 2001, 294 (5546) :1471-1472
[8]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[9]   Catalytically active gold: The role of cluster morphology [J].
Choudhary, TV ;
Goodman, DW .
APPLIED CATALYSIS A-GENERAL, 2005, 291 (1-2) :32-36
[10]   Vital role of moisture in the catalytic activity of supported gold nanoparticles [J].
Daté, M ;
Okumura, M ;
Tsubota, S ;
Haruta, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2129-2132