Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labeled dinucleotide markers

被引:92
作者
Ghosh, S
Karanjawala, ZE
Hauser, ER
Ally, D
Knapp, JI
Rayman, JB
Musick, A
Tannenbaum, J
Te, C
Shapiro, S
Eldridge, W
Musick, T
Martin, C
Smith, JR
Carpten, JD
Brownstein, MJ
Powell, JI
Whiten, R
Chines, P
Nylund, SJ
Magnuson, VL
Boehnke, M
Collins, FS
机构
[1] NIH,COMPUTAT BIOSCI & ENGN LAB,DIV COMP RES & TECHNOL,BETHESDA,MD 20892
[2] NIMH,NIH,BETHESDA,MD 20892
[3] UNIV MICHIGAN,SCH PUBL HLTH,DEPT BIOSTAT,ANN ARBOR,MI 48109
[4] NATL PUBL HLTH INST,DEPT EPIDEMIOL & HLTH PROMOT,DIABET & GENET EPIDEMIOL UNIT,HELSINKI,FINLAND
来源
GENOME RESEARCH | 1997年 / 7卷 / 02期
关键词
D O I
10.1101/gr.7.2.165
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Large-scale genotyping is required to generate dense identity-by-descent maps to map genes for human complex disease. In some studies the number of genotypes needed can approach or even exceed million. Generally, linkage and linkage disequilibrium analyses depend on clear allele identification and subsequent allele frequency estimation. Accurate grouping or categorization of each allele in the sample [allele calling or binning) is therefore an absolute requirement. Hence,a genotyping system that can reliably achieve this is necessary. In the case of affected sib-pair analysis without parents, the need for accurate allele calling is even more critical. We describe methods that permit precise sizing of alleles across multiple gels using the fluorescence-based, Applied Biosystems (ABI] genotyping technology and discuss ways to reduce genotyping error rates. Using database utilities, we show how to minimize intergrel allele size variation, to combine data effectively from different models of ABI sequencing machines, and automatically bin alleles. The final data can then be converted into a format ready for analysis by statistical genetic packages such as MENDEL.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 26 条
[1]  
BOEHNKE M, 1991, AM J HUM GENET, V48, P22
[2]   Modulation of non-templated nucleotide addition by taq DNA polymerase: Primer modifications that facilitate genotyping [J].
Brownstein, MJ ;
Carpten, JD ;
Smith, JR .
BIOTECHNIQUES, 1996, 20 (06) :1004-+
[3]  
BUETOW KH, 1991, AM J HUM GENET, V49, P985
[4]  
*CHLC, 1994, SCIENCE, V265, P2049
[5]   POSITIONAL CLONING MOVES FROM PERDITIONAL TO TRADITIONAL [J].
COLLINS, FS .
NATURE GENETICS, 1995, 9 (04) :347-350
[6]   A GENOME-WIDE SEARCH FOR HUMAN TYPE-1 DIABETES SUSCEPTIBILITY GENES [J].
DAVIES, JL ;
KAWAGUCHI, Y ;
BENNETT, ST ;
COPEMAN, JB ;
CORDELL, HJ ;
PRITCHARD, LE ;
REED, PW ;
GOUGH, SCL ;
JENKINS, SC ;
PALMER, SM ;
BALFOUR, KM ;
ROWE, BR ;
FARRALL, M ;
BARNETT, AH ;
BAIN, SC ;
TODD, JA .
NATURE, 1994, 371 (6493) :130-136
[7]   A comprehensive genetic map of the human genome based on 5,264 microsatellites [J].
Dib, C ;
Faure, S ;
Fizames, C ;
Samson, D ;
Drouot, N ;
Vignal, A ;
Millasseau, P ;
Marc, S ;
Hazan, J ;
Seboun, E ;
Lathrop, M ;
Gyapay, G ;
Morissette, J ;
Weissenbach, J .
NATURE, 1996, 380 (6570) :152-154
[8]   SETS OF SHORT TANDEM REPEAT POLYMORPHISMS FOR EFFICIENT LINKAGE SCREENING OF THE HUMAN GENOME [J].
DUBOVSKY, J ;
SHEFFIELD, VC ;
DUYK, GM ;
WEBER, JL .
HUMAN MOLECULAR GENETICS, 1995, 4 (03) :449-452
[9]   SURVEY OF TRINUCLEOTIDE REPEATS IN THE HUMAN GENOME - ASSESSMENT OF THEIR UTILITY AS GENETIC-MARKERS [J].
GASTIER, JM ;
PULIDO, JC ;
SUNDEN, S ;
BRODY, T ;
BUETOW, KH ;
MURRAY, JC ;
WEBER, JL ;
HUDSON, TJ ;
SHEFFIELD, VC ;
DUYK, GM .
HUMAN MOLECULAR GENETICS, 1995, 4 (10) :1829-1836
[10]  
Ghosh S, 1996, ANNU REV MED, V47, P333