The existence of inertial functions in skew product systems

被引:24
作者
Campbell, KM
Davies, ME
机构
[1] Centre for Nonlinear Dynamics and Its Applications, University College London, London, Gower Street
关键词
D O I
10.1088/0951-7715/9/3/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a generalization of the inertial manifold, which we call an inertial function. This is a smooth function whose graph is invariant under the dynamics, contains the global attractor, and is exponentially attracting for almost all initial conditions. The construction of this inertial function is based on the Lyapunov exponents of the dynamical system and on properties of the absorbing set.
引用
收藏
页码:801 / 817
页数:17
相关论文
共 13 条
[1]   CHAOTIC CASCADE MODEL FOR TURBULENT VELOCITY DISTRIBUTIONS [J].
BECK, C .
PHYSICAL REVIEW E, 1994, 49 (05) :3641-3652
[2]   LOCAL ADAPTIVE GALERKIN BASES FOR LARGE-DIMENSIONAL DYNAMIC-SYSTEMS [J].
BROOMHEAD, DS ;
INDIK, R ;
NEWELL, AC ;
RAND, DA .
NONLINEARITY, 1991, 4 (02) :159-197
[3]  
DAVIES ME, 1996, IN PRESS NONLINEARIT
[4]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[5]  
DUNN D, 1994, THESIS U COLL LONDON
[6]  
FATHI A, 1983, LECT NOTES MATH, V1007, P177
[7]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[8]  
HIRSCH MW, 1977, SLN, V583
[9]   ON INVARIANT SETS AND INVARIANT MANIFOLDS OF DIFFERENTIAL SYSTEMS [J].
JARNIK, J ;
KURZWEIL, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (02) :247-&
[10]   ERGODIC PROPERTIES OF LINEAR DYNAMIC-SYSTEMS [J].
JOHNSON, RA ;
PALMER, KJ ;
SELL, GR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :1-33