Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator

被引:422
作者
Yang, Rusen [1 ]
Qin, Yong [1 ]
Li, Chang [1 ]
Zhu, Guang [1 ]
Wang, Zhong Lin [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Zinc oxide - II-VI semiconductors - Muscle - Piezoelectricity - Nanowires - Biomechanics;
D O I
10.1021/nl803904b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A living species has numerous sources of mechanical energy, such as muscle stretching, arm/leg swings, walking/running, heart beats, and blood flow. We demonstrate a piezoelectric nanowire based nanogenerator that converts biomechanical energy, such as the movement of a human finger and the body motion of a live hamster (Campbell's dwarf), into electricity. A single wire generator (SWG) consists of a flexible substrate with a ZnO nanowire affixed laterally at Its two ends on the substrate surface. Muscle stretching results In the back and forth stretching of the substrate and the nanowire. The piezoelectric potential created Inside the wire leads to the flow of electrons In the external circuit. The output voltage has been increased by integrating multiple SWGs. A series connection of four SWGs produced an output voltage of up to similar to 0.1-0.15 V. The success of energy harvesting from a tapping finger and a running hamster reveals the potential of using the nanogenerators for scavenging low-frequency energy from regular and irregular biomotion.
引用
收藏
页码:1201 / 1205
页数:5
相关论文
共 14 条
[1]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[2]   Biomechanical energy harvesting: Generating electricity during walking with minimal user effort [J].
Donelan, J. M. ;
Li, Q. ;
Naing, V. ;
Hoffer, J. A. ;
Weber, D. J. ;
Kuo, A. D. .
SCIENCE, 2008, 319 (5864) :807-810
[3]   An electromagnetic, vibration-powered generator for intelligent sensor systems [J].
Glynne-Jones, P ;
Tudor, MJ ;
Beeby, SP ;
White, NM .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 110 (1-3) :344-349
[4]   Carrier density and Schottky barrier on the performance of DC nanogenerator [J].
Liu, Jin ;
Fei, Peng ;
Song, Jinhui ;
Wang, Xudong ;
Lao, Changshi ;
Tummala, Rao ;
Wang, Zhong Lin .
NANO LETTERS, 2008, 8 (01) :328-332
[5]   Nanowire-based nanoelectronic devices in the life sciences [J].
Patolsky, Fernando ;
Timko, Brian P. ;
Zheng, Gengfeng ;
Lieber, Charles M. .
MRS BULLETIN, 2007, 32 (02) :142-149
[6]   Improving power output for vibration-based energy scavengers [J].
Roundy, S ;
Leland, ES ;
Baker, J ;
Carleton, E ;
Reilly, E ;
Lai, E ;
Otis, B ;
Rabaey, JM ;
Wright, PK ;
Sundararajan, V .
IEEE PERVASIVE COMPUTING, 2005, 4 (01) :28-36
[7]  
SABA CR, 2008, SENSOR ACTUAT A-PHYS, V147, P248
[8]   Filled skutterudite antimonides: A new class of thermoelectric materials [J].
Sales, BC ;
Mandrus, D ;
Williams, RK .
SCIENCE, 1996, 272 (5266) :1325-1328
[9]   Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J].
Tian, Bozhi ;
Zheng, Xiaolin ;
Kempa, Thomas J. ;
Fang, Ying ;
Yu, Nanfang ;
Yu, Guihua ;
Huang, Jinlin ;
Lieber, Charles M. .
NATURE, 2007, 449 (7164) :885-U8
[10]   Single nanowire photovoltaics [J].
Tian, Bozhi ;
Kempa, Thomas J. ;
Lieber, Charles M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :16-24