On the joint asymptotic behavior of two rank-based estimators of the association parameter in the gamma frailty model

被引:10
作者
Genest, C [1 ]
Quessy, JF
Rémillard, B
机构
[1] Univ Laval, Quebec City, PQ, Canada
[2] Univ Quebec, Trois Rivieres, PQ GA9 5H7, Canada
[3] HEC Montreal, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Clayton model; concordance; copula; gamma frailty;
D O I
10.1016/j.spl.2005.03.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rank-based estimators were proposed by Clayton [Clayton D.G., 1978. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 141-151.] and Oakes [Oakes, D., 1982. A model for association in bivariate survival data. J. Roy. Statist. Soc. Ser. B 44, 414-422.] for the association parameter in the bivariate gamma frailty model. The joint asymptotic behavior of these estimators is considered here, following a different approach from that used by Oakes [Oakes, D., 1982. A model for association in bivariate survival data. J. Roy. Statist. Soc. Ser. B 44, 414-422; Oakes, D., 1986. Semiparametric inference in a model for association in bivariate survival data. Biometrika 73, 353-361]. This leads to a correction of the formula given by Shih [Shih, J.H. 1998. A goodness-of-fit test for association in a bivariate survival model. Biometrika 85, 189-200.] for the limiting covariance between the two estimators. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1967, THEORY RANK TESTS
[2]   MULTIVARIATE GENERALIZATIONS OF THE PROPORTIONAL HAZARDS MODEL [J].
CLAYTON, D ;
CUZICK, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1985, 148 :82-117
[3]  
CLAYTON DG, 1978, BIOMETRIKA, V65, P141, DOI 10.1093/biomet/65.1.141
[4]   On semi-competing risks data [J].
Fine, JP ;
Jiang, H ;
Chappell, R .
BIOMETRIKA, 2001, 88 (04) :907-919
[5]   On the multivariate probability integral transformation [J].
Genest, C ;
Rivest, LP .
STATISTICS & PROBABILITY LETTERS, 2001, 53 (04) :391-399
[6]  
Ghoudi K, 2004, FIELDS I COMMUN, V44, P381
[7]   Flexible maximum likelihood methods for bivariate proportional hazards models [J].
He, WQ ;
Lawless, JF .
BIOMETRICS, 2003, 59 (04) :837-848
[8]  
Lee AJ, 1990, U STAT THEORY PRACTI
[9]  
Nelsen R. B., 1999, INTRO COPULAS
[10]  
OAKES D, 1986, BIOMETRIKA, V73, P353