A recently discovered class of receptors, melinocortin-3 and -4 receptor (MC3/4-R), are located within the brain and modulate feed intake in rodents. Stimulation of the receptor (agonist) inhibits feed intake whereas blockade (antagonist) of the receptor increases intake. Our knowledge e of factors regulating voluntary feed intake in humans and domestic animals is very limited. i.c.v. administration of an MC3/4-R agonist, NDP-MSH, suppressed (P< 0(.)05) feed intake compared with controls at 12, 24, 48 and 72 h after treatment in growing pigs. Fed pigs were more responsive to the MC3/4-R agonist then fasted animals. However, i.c.v. treatment with MC3/4-R antagonist, SHU9119, failed to stimulate intake. The failure of MC3/4-R antagonist to stimulate feed intake suggests involvement of other brain hormone(s) which antagonize the action of SHU9119 at the MC3/4-R, blocking its stimulatory effect on intake. Treatment with NDP-MSH or SHU9119, across a wide dose range, failed to affect LH and GH secretion, except for the 10 mug dose of NDP-MSH, which exhibited both a stimulatory and an inhibitory effect on GH secretion in fasted animals. Treatment with agouti-related peptide, a natural brain hormone that blocks the MC3/4R, failed to stimulate feed intake. These results do not support the idea that endogenous melanocortin pays a critical role in regulating feed intake and pituitary hormone secretion in the pig. SHU9119 blocked the NDP-MSH-induced increase in cAMP in HEK293 cells expressing the porcine MC4-R sequence without the missense mutation. The EC50 and IC50 values were similar to the human MC4-R,, confirming that SHU9119 is a pig MC4-R antagonist. However, pigs were heterozygous for an MC4-R gene missense mutation. It is possible that the MC4-R mutation alters function and this may explain the failure to demonstrate MC3/4-R involvement in modulating feeding behavior and LH and GH secretion it) the pig.