Black tea polyphenols inhibit IGF-I-induced signaling through Akt in normal prostate epithelial cells and Du145 prostate carcinoma cells

被引:55
作者
Klein, RD [1 ]
Fischer, SM [1 ]
机构
[1] Univ Texas, MD Anderson Canc Ctr, Div Sci Pk Res, Smithville, TX 78957 USA
关键词
D O I
10.1093/carcin/23.1.217
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tea polyphenols have been proposed as potential chemopreventive agents against prostate cancer, primarily because of their high intake by populations with reduced cancer incidence and their reported ability to inhibit proliferation and increase apoptosis in prostate cancer cells in culture. Insulin-like growth factor-I (IGF-I) has been implicated as a risk factor for the development of prostate cancer by epidemiological studies and has been shown to be causative in animal models. One of the primary signal transduction pathways activated by IGF-I binding to its receptor is the Akt pathway. We determined that phosphorylated Akt levels are very low in serum-starved human normal prostate epithelial cells (PrEC) and Du145 prostate carcinoma cells, and that treatment of these cells with IGF-I results in a rapid and sustained phosphorylation of Akt. Pre-treatment of PrEC and Du145 cells with doses as low as 20 mug/ml of a mixture of black tea polyphenols (BTP) substantially reduced IGF-I-mediated Akt phosphorylation. This effect of BTP appears to be due partially to the reduced autophosphorylation of IGF-I receptor-1 in BTP-treated cells. BTP pre-treatment also decreased downstream effects of Akt activation including phosphorylation of glycerol synthase kinase-3, increased cyclin D1 protein levels and increased DNA synthesis. Our results indicate that polyphenols from black tea inhibit the IGF-I signal transduction pathway, which has been linked to increased prostate cancer incidence in human populations and, therefore, provide further support for the potential of BTP to prevent prostate cancer.
引用
收藏
页码:217 / 221
页数:5
相关论文
共 35 条
[1]   Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate [J].
Ahmad, N ;
Cheng, PY ;
Mukhtar, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 275 (02) :328-334
[2]   Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells [J].
Ahmad, N ;
Feyes, DK ;
Nieminen, AL ;
Agarwal, R ;
Mukhtar, H .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1997, 89 (24) :1881-1886
[3]   Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation [J].
Alt, JR ;
Cleveland, JL ;
Hannink, M ;
Diehl, JA .
GENES & DEVELOPMENT, 2000, 14 (24) :3102-3114
[4]   AUTOCRINE REGULATION OF CELL-PROLIFERATION BY THE INSULIN-LIKE GROWTH-FACTOR (IGF) AND IGF BINDING PROTEIN-3 PROTEASE SYSTEM IN A HUMAN PROSTATE CARCINOMA CELL-LINE (PC-3) [J].
ANGELLOZNICOUD, P ;
BINOUX, M .
ENDOCRINOLOGY, 1995, 136 (12) :5485-5492
[5]   Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology [J].
Butler, AA ;
Yakar, S ;
Gewolb, IH ;
Karas, M ;
Okubo, Y ;
LeRoith, D .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 121 (01) :19-26
[6]   Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells [J].
Chung, LY ;
Cheung, TC ;
Kong, SK ;
Fung, KP ;
Choy, YM ;
Chen, ZY ;
Kwok, TT .
LIFE SCIENCES, 2001, 68 (10) :1207-1214
[7]   INSULIN-LIKE GROWTH-FACTORS (IGFS), IGF RECEPTORS, AND IGF-BINDING PROTEINS IN PRIMARY CULTURES OF PROSTATE EPITHELIAL-CELLS [J].
COHEN, P ;
PEEHL, DM ;
LAMSON, G ;
ROSENFELD, RG .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1991, 73 (02) :401-407
[8]   Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1 [J].
Collado, M ;
Medema, RH ;
García-Cao, I ;
Dubuisson, MLN ;
Barradas, M ;
Glassford, J ;
Rivas, C ;
Burgering, BMT ;
Serrano, M ;
Lam, EWF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :21960-21968
[9]   REGULATION OF DU145 HUMAN PROSTATE-CANCER CELL-PROLIFERATION BY INSULIN-LIKE GROWTH-FACTORS AND ITS INTERACTION WITH THE EPIDERMAL GROWTH-FACTOR AUTOCRINE LOOP [J].
CONNOLLY, JM ;
ROSE, DP .
PROSTATE, 1994, 24 (04) :167-175
[10]   Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization [J].
Diehl, JA ;
Cheng, MG ;
Roussel, MF ;
Sherr, CJ .
GENES & DEVELOPMENT, 1998, 12 (22) :3499-3511