Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat

被引:226
作者
Silhol, M
Tyagi, M
Giacca, M
Lebleu, B
Vivès, E
机构
[1] Inst Genet Mol Montpellier, CNRS, UMR 5124, F-34033 Montpellier 1, France
[2] Int Ctr Genet Engn & Biotechnol, Mol Med Lab, I-34012 Trieste, Italy
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2002年 / 269卷 / 02期
关键词
Tat; cell penetrating peptide (CPP); cellular uptake; heparan sulfate;
D O I
10.1046/j.0014-2956.2001.02671.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translocation through the plasma membrane is a major limiting step for the cellular delivery of macromolecules. A promising strategy to overcome this problem consists in the chemical conjugation (or fusion) to cell penetrating peptides (CPP) derived from proteins able to cross the plasma membrane. A large number of different cargo molecules such as oligonucleotides, peptides, peptide nucleic acids, proteins or even nanoparticles have been internalized in cells by this strategy. One of these translocating peptides was derived from the HIV-1 Tat protein. The mechanisms by which CPP enter cells remain unknown. Recently, convincing biochemical and genetic findings has established that the full-length Tat protein was internalized in cells via the ubiquitous heparan sulfate (HS) proteoglycans. We demonstrate here that the short Tat CPP is taken up by a route that does not involve the HS proteoglycans.
引用
收藏
页码:494 / 501
页数:8
相关论文
共 29 条
[1]  
ABUAMER Y, 2001, J BIOL CHEM, V14, P14
[2]   DOWN-REGULATION OF AMYLOID PRECURSOR PROTEIN INHIBITS NEURITE OUTGROWTH IN-VITRO [J].
ALLINQUANT, B ;
HANTRAYE, P ;
MAILLEUX, P ;
MOYA, K ;
BOUILLOT, C ;
PROCHIANTZ, A .
JOURNAL OF CELL BIOLOGY, 1995, 128 (05) :919-927
[3]   TUMOR-CELL RETENTION OF ANTIBODY FAB FRAGMENTS IS ENHANCED BY AN ATTACHED HIV TAT PROTEIN-DERIVED PEPTIDE [J].
ANDERSON, DC ;
NICHOLS, E ;
MANGER, R ;
WOODLE, D ;
BARRY, M ;
FRITZBERG, AR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 194 (02) :876-884
[4]   Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates [J].
Astriab-Fisher, A ;
Sergueev, DS ;
Fisher, M ;
Shaw, BR ;
Juliano, RL .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (01) :83-90
[5]   STRUCTURAL STUDIES OF HIV-1 TAT PROTEIN [J].
BAYER, P ;
KRAFT, M ;
EJCHART, A ;
WESTENDORP, M ;
FRANK, R ;
ROSCH, P .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (04) :529-535
[7]   Cell-permeable peptide inhibitors of JNK novel blockers of β-cell death [J].
Bonny, C ;
Oberson, A ;
Negri, S ;
Sauser, C ;
Schorderet, DF .
DIABETES, 2001, 50 (01) :77-82
[8]   THE RETRO-INVERSO FORM OF A HOMEOBOX-DERIVED SHORT PEPTIDE IS RAPIDLY INTERNALIZED BY CULTURED NEURONS - A NEW BASIS FOR AN EFFICIENT INTRACELLULAR DELIVERY SYSTEM [J].
BRUGIDOU, J ;
LEGRAND, C ;
MERY, J ;
RABIE, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 214 (02) :685-693
[9]   Intracellular delivery of a Tat-eGFP fusion protein into muscle cells [J].
Caron, NJ ;
Torrente, Y ;
Camirand, G ;
Bujold, M ;
Chapdelaine, P ;
Leriche, K ;
Bresolin, N ;
Tremblay, JP .
MOLECULAR THERAPY, 2001, 3 (03) :310-318
[10]   SEQUENCE-SPECIFIC INTERACTION OF TAT PROTEIN AND TAT PEPTIDES WITH THE TRANSACTIVATION-RESPONSIVE SEQUENCE ELEMENT OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INVITRO [J].
CORDINGLEY, MG ;
LAFEMINA, RL ;
CALLAHAN, PL ;
CONDRA, JH ;
SARDANA, VV ;
GRAHAM, DJ ;
NGUYEN, TM ;
LEGROW, K ;
GOTLIB, L ;
SCHLABACH, AJ ;
COLONNO, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (22) :8985-8989