Transcription profiling of the mgrA regulon in Staphylococcus aureus

被引:166
作者
Luong, TT
Dunman, PM
Murphy, E
Projan, SJ
Lee, CY
机构
[1] Univ Arkansas Med Sci, Dept Microbiol & Immunol, Little Rock, AR 72205 USA
[2] Univ Nebraska, Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA
[3] Wyeth Res, Pearl River, NY USA
[4] Wyeth Res, Cambridge, MA USA
关键词
D O I
10.1128/JB.188.5.1899-1910.2006
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
MgrA has been shown to affect multiple Staphylococcus aureus genes involved in virulence and antibiotic resistance. To comprehensively identify the target genes regulated by mgrA, we employed a microarray method to analyze the transcription profiles of S. aureus Newman, its isogeneic mgrA mutant, and an MgrA-overproducing derivative. We compared genes that were differentially expressed at exponential or early stationary growth phases. Our results showed that MgrA affected an impressive number of genes, 175 of which were positively regulated and 180 of which were negatively regulated in an mgrA-specific manner. The target genes included all functional categories. The microarray results were validated by real-time reverse transcription-PCR quantitation of a set of selected genes from different functional categories. Our data also indicate that mgrA regulates virulence factors in a fashion analogous to that of the accessory gene regulatory locus (agr). Accordingly, exoproteins are upregulated and surface proteins are downregulated by the regulator, suggesting that mgrA may function in concert with agr. The fact that a large number of genes are regulated by mgrA implies that MgrA is a major global regulator in S. aureus.
引用
收藏
页码:1899 / 1910
页数:12
相关论文
共 40 条
[1]   Regulation of virulence determinants in Staphylococcus aureus [J].
Arvidson, S ;
Tegmark, K .
INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2001, 291 (02) :159-170
[2]   Global gene expression in Staphylococcus aureus biofilms [J].
Beenken, KE ;
Dunman, PM ;
McAleese, F ;
Macapagal, D ;
Murphy, E ;
Projan, SJ ;
Blevins, JS ;
Smeltzer, MS .
JOURNAL OF BACTERIOLOGY, 2004, 186 (14) :4665-4684
[3]   Microarray-based analysis of the Staphylococcus aureus σB regulon [J].
Bischoff, M ;
Dunman, P ;
Kormanec, J ;
Macapagal, D ;
Murphy, E ;
Mounts, W ;
Berger-Bächi, B ;
Projan, S .
JOURNAL OF BACTERIOLOGY, 2004, 186 (13) :4085-4099
[4]   Cloning of the Staphylococcus aureus ddh gene encoding NAD(+)-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide-resistant isolate [J].
BoyleVavra, S ;
deJonge, BLM ;
Ebert, CC ;
Daum, RS .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6756-6763
[5]   Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus [J].
Brunskill, EW ;
Bayles, KW .
JOURNAL OF BACTERIOLOGY, 1996, 178 (03) :611-618
[6]  
CASIANOCOLON A, 1988, APPL ENVIRON MICROB, V54, P1318
[7]   SarS, a SarA homolog repressible by agr, is an activator of protein a synthesis in Staphylococcus aureus [J].
Cheung, AL ;
Schmidt, K ;
Bateman, B ;
Manna, AC .
INFECTION AND IMMUNITY, 2001, 69 (04) :2448-2455
[8]   Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus [J].
Cheung, AL ;
Bayer, AS ;
Zhang, GY ;
Gresham, H ;
Xiong, YQ .
FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2004, 40 (01) :1-9
[9]   The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation [J].
Cramton, SE ;
Gerke, C ;
Schnell, NF ;
Nichols, WW ;
Götz, F .
INFECTION AND IMMUNITY, 1999, 67 (10) :5427-5433
[10]   Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci [J].
Dunman, PM ;
Murphy, E ;
Haney, S ;
Palacios, D ;
Tucker-Kellogg, G ;
Wu, S ;
Brown, EL ;
Zagursky, RJ ;
Shlaes, D ;
Projan, SJ .
JOURNAL OF BACTERIOLOGY, 2001, 183 (24) :7341-7353