Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory

被引:143
作者
Alles, B [1 ]
DElia, M [1 ]
DiGiacomo, A [1 ]
机构
[1] IST NAZL FIS NUCL, I-56126 PISA, ITALY
关键词
D O I
10.1016/S0550-3213(97)00205-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We determine the topological susceptibility chi at T = 0 in pure SU(3) gauge theory and its behaviour at finite T across the deconfining transition. We use an improved topological charge density operator. chi drops sharply by one order of magnitude at the deconfining temperature T-c. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 32 条
[1]   RENORMALIZATION AND TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE - SU(2) YANG-MILLS THEORY [J].
ALLES, B ;
CAMPOSTRINI, M ;
DIGIACOMO, A ;
GUNDUC, Y ;
VICARI, E .
PHYSICAL REVIEW D, 1993, 48 (05) :2284-2289
[2]   TOPOLOGICAL SUSCEPTIBILITY - A NONPERTURBATIVE DETERMINATION OF RENORMALIZATIONS [J].
ALLES, B ;
CAMPOSTRINI, M ;
DIGIACOMO, A ;
GUNDUC, Y ;
VICARI, E .
NUCLEAR PHYSICS B, 1994, :504-506
[3]   RUNNING COUPLING AND THE LAMBDA PARAMETER FROM SU(3) LATTICE SIMULATIONS [J].
BALI, GS ;
SCHILLING, K .
PHYSICAL REVIEW D, 1993, 47 (02) :661-672
[4]  
BOYD G, 9604 BI TP BIEL
[5]   THE TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE [J].
CAMPOSTRINI, M ;
DIGIACOMO, A ;
PANAGOPOULOS, H .
PHYSICS LETTERS B, 1988, 212 (02) :206-210
[6]   THE TOPOLOGICAL SUSCEPTIBILITY OF THE PURE SU(3) YANG-MILLS VACUUM ON THE LATTICE [J].
CAMPOSTRINI, M ;
DIGIACOMO, A ;
GUNDUC, Y ;
LOMBARDO, MP ;
PANAGOPOULOS, H ;
TRIPICCIONE, R .
PHYSICS LETTERS B, 1990, 252 (03) :436-442
[7]   TOPOLOGICAL CHARGE, RENORMALIZATION AND COOLING ON THE LATTICE [J].
CAMPOSTRINI, M ;
DIGIACOMO, A ;
PANAGOPOULOS, H ;
VICARI, E .
NUCLEAR PHYSICS B, 1990, 329 (03) :683-697
[8]   Improved lattice operators: Case of the topological charge density [J].
Christou, C ;
DiGiacomo, A ;
Panagopoulos, H ;
Vicari, E .
PHYSICAL REVIEW D, 1996, 53 (05) :2619-2624
[9]  
Crewther R.J., 1979, RIV NUOVO CIMENTO, V2N8, P63, DOI [DOI 10.1007/BF02724349, 10.1007/BF02724349]
[10]   THE CLASSICALLY PERFECT FIXED-POINT ACTION FOR SU(3) GAUGE-THEORY [J].
DEGRAND, T ;
HASENFRATZ, A ;
HASENFRATZ, P ;
NIEDERMAYER, F .
NUCLEAR PHYSICS B, 1995, 454 (03) :587-614