A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance

被引:82
作者
Abedi, R.
Petracovici, B.
Haber, R. B.
机构
[1] Univ Illinois, Dept Theoret & Appl Mech, Urbana, IL 61801 USA
[2] Western Illinois Univ, Dept Math, Macomb, IL 61455 USA
基金
美国国家科学基金会;
关键词
discontinuous Galerkin; spacetime; finite element; elastodynamics; shocks;
D O I
10.1016/j.cma.2005.06.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new space-time discontinuous Galerkin finite element method for linearized elastodynamics that delivers exact balance of linear and angular momentum over every space-time element. The method is formulated for use with fully unstructured space-time grids and uses displacement basis functions that are discontinuous across all inter-element boundaries. We introduce a new space-time formulation of continuum elastodynamics that uses differential forms and the exterior calculus on manifolds to generate a system of space-time field equations and jump conditions. Then we invoke a Bubnov-Galerkin weighted residuals procedure to formulate the finite element method. We describe an implementation on patch-wise causal meshes that features linear complexity in the number of elements and special per-pixel accurate visualization. Numerical examples confirm an a priori error estimate and demonstrate the method's shock-capturing capabilities. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3247 / 3273
页数:27
相关论文
共 32 条
[1]  
Abedi Reza, 2004, P 20 ANN ACM S COMPU, P300
[2]   Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations [J].
Atkins, HL ;
Shu, CW .
AIAA JOURNAL, 1998, 36 (05) :775-782
[3]  
Betsch P, 2000, INT J NUMER METH ENG, V49, P599, DOI 10.1002/1097-0207(20001020)49:5<599::AID-NME960>3.0.CO
[4]  
2-9
[5]   Conservation properties of a time FE method - part II: Time-stepping schemes for non-linear elastodynamics [J].
Betsch, P ;
Steinmann, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (08) :1931-1955
[6]  
Bishop R.L., 1980, Tensor analysis on manifolds
[7]  
Erickson Jeff., 2002, Proceedings of the 11th International Meshing Roundtable, P391
[8]   Explicit finite element methods for symmetric hyperbolic equations [J].
Falk, RS ;
Richter, GR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :935-952
[9]  
FLEMING WH, 1964, FUNCTIONS SEVERAL VA
[10]   A SPACE-TIME FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION [J].
FRENCH, DA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) :145-157