Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model

被引:229
作者
Nakano, E
Imamizu, H
Osu, R
Uno, Y
Gomi, H
Yoshioka, T
Kawato, M
机构
[1] ATR Human Informat Proc Res Labs, Kyoto 6190288, Japan
[2] Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6570013, Japan
[3] Japan Sci & Technol Corp, ERATO, Kawato Dynam Brain Program, Kyoto 6190288, Japan
[4] Toyohashi Univ Technol, Dept Informat & Comp Sci, Aichi 4418540, Japan
[5] NTT Corp, NTT Commun Sci Labs, Kanagawa 2430198, Japan
关键词
D O I
10.1152/jn.1999.81.5.2140
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A number of invariant features of multijoint planar reaching movements have been observed in measured hand trajectories. These features include roughly straight hand paths and bell-shaped speed profiles where the trajectory curvatures between transverse and radial movements have been found to be different. For quantitative and statistical investigations, we obtained a large amount of trajectory data within a wide range of the workspace in the horizontal and sagittal planes (400 trajectories for each subject). A pair of movements within the horizontal and sagittal planes was set to be equivalent in the elbow and shoulder flexion/extension. The trajectory curvatures of the corresponding pair in these planes were almost the same. Moreover, these curvatures can be accurately reproduced with a linear regression from the summation of rotations in the elbow and shoulder joints. This means that trajectory curvatures systematically depend on the movement location and direction represented in the intrinsic body coordinates. We then examined the following four candidates as planning spaces and the four corresponding computational models for trajectory planning. The candidates were as follows: the minimum hand jerk model in an extrinsic-kinematic space, the minimum angle jerk model in an intrinsic-kinematic space, the minimum torque change model in an intrinsic-dynamic-mechanical space, and the minimum commanded torque change model in an intrinsic-dynamic-neural space. The minimum commanded torque change model, which is proposed here as a computable version of the minimum motor command change model, reproduced actual trajectories best for curvature, position, velocity, acceleration, and torque. The model's prediction that the longer the duration of the move ment the larger the trajectory curvature was also confirmed. Movements passing through via-points in the horizontal plane were also measured, and they converged to those predicted by the minimum commanded torque change model with training. Our results indicated that the brain may plan, and learn to plan, the optimal trajectory in the intrinsic coordinates considering arm and muscle dynamics and using representations for motor commands controlling muscle tensions.
引用
收藏
页码:2140 / 2155
页数:16
相关论文
共 56 条
[1]   HUMAN ARM TRAJECTORY FORMATION [J].
ABEND, W ;
BIZZI, E ;
MORASSO, P .
BRAIN, 1982, 105 (JUN) :331-348
[2]  
AKAZAWA K, 1994, CLIN BIOMECHANICS RE, P217
[3]  
ATKESON CG, 1985, J NEUROSCI, V5, P2318
[4]   TIME-VARYING STIFFNESS OF HUMAN ELBOW JOINT DURING CYCLIC VOLUNTARY MOVEMENT [J].
BENNETT, DJ ;
HOLLERBACH, JM ;
XU, Y ;
HUNTER, IW .
EXPERIMENTAL BRAIN RESEARCH, 1992, 88 (02) :433-442
[5]  
BENNETT DJ, 1993, EXP BRAIN RES, V95, P488
[6]  
Bernstein NA, 1967, The co-ordination and regulation of movements
[7]  
BIZZI E, 1984, J NEUROSCI, V4, P2738
[8]   The motor system does not learn the dynamics of the arm by rote memorization of past experience [J].
Conditt, MA ;
Gandolfo, F ;
MussaIvaldi, FA .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :554-560
[9]   Minimum muscle tension change trajectories predicted by using a 17-muscle model of the monkey's arm [J].
Dornay, M ;
Uno, Y ;
KAwato, M ;
Suzuki, R .
JOURNAL OF MOTOR BEHAVIOR, 1996, 28 (02) :83-100
[10]   TRAJECTORY ADAPTATION TO A NONLINEAR VISUOMOTOR TRANSFORMATION - EVIDENCE OF MOTION PLANNING IN VISUALLY PERCEIVED SPACE [J].
FLANAGAN, JR ;
RAO, AK .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (05) :2174-2178