Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles

被引:216
作者
Gao, KP [1 ]
Jiang, XG [1 ]
机构
[1] Fudan Univ, Sch Pharm, Dept Pharmaceut, Shanghai 200032, Peoples R China
关键词
polybutylcyanoacrylate; methotrexate; nanoparticles; blood brain barrier;
D O I
10.1016/j.ijpharm.2005.11.040
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Transports of methotrexate-loaded polybutylcyanoacrylate nanoparticles with different sizes across blood brain barrier were investigated in this experiment. The drug-loaded nanoparticles were prepared by emulsion polymerization method. After coating with polysorbate 80, nanoparticles with the size 70, 170, 220, 345 nm were, respectively, i.v. injected into rats at the dose of 3.2 mg/kg. Uncoated nanoparticles and methotrexate solution were also i.v. injected at the same dosage as controls. 0.5, 1, 1.5, 2, 3, 4 h after injection, cerebrospinal fluids and brain tissues were collected for tests. Drug level in all biological samples was determined by HPLC. It was found out that nanoparticles overcoated by polysorbate 80 could significantly improve the drug level in both brain tissues and cerebrospinal fluids compared with uncoated ones and simple solution. Seventy-nanometer nanoparticles could deliver more drugs into brain while no significant difference was observed among the other three size ranges. In conclusion, polysorbate 80-coated polybutylcyanoacrylate nanoparticles could be used to overcome blood brain barrier especially those whose diameter was below 100 nm. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 20 条
[1]   Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles [J].
Alyautdin, RN ;
Petrov, VE ;
Langer, K ;
Berthold, A ;
Kharkevich, DA ;
Kreuter, J .
PHARMACEUTICAL RESEARCH, 1997, 14 (03) :325-328
[2]   Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study [J].
Alyautdin, RN ;
Tezikov, EB ;
Ramge, P ;
Kharkevich, DA ;
Begley, DJ ;
Kreuter, J .
JOURNAL OF MICROENCAPSULATION, 1998, 15 (01) :67-74
[3]   UPTAKE OF SURFACTANT-COATED POLY(METHYL METHACRYLATE)-NANOPARTICLES BY BOVINE BRAIN MICROVESSEL ENDOTHELIAL-CELL MONOLAYERS [J].
BORCHARD, G ;
AUDUS, KL ;
SHI, FL ;
KREUTER, J .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1994, 110 (01) :29-35
[4]   Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery [J].
Calvo, P ;
Gouritin, B ;
Chacun, H ;
Desmaële, D ;
D'Angelo, J ;
Noel, JP ;
Georgin, D ;
Fattal, E ;
Andreux, JP ;
Couvreur, P .
PHARMACEUTICAL RESEARCH, 2001, 18 (08) :1157-1166
[5]  
CHEN JZ, 1999, BIOCHEMISTRY-US, P256
[6]   ADSORPTION OF ANTI-NEOPLASTIC DRUGS TO POLYALKYLCYANOACRYLATE NANOPARTICLES AND THEIR RELEASE IN CALF SERUM [J].
COUVREUR, P ;
KANTE, B ;
ROLAND, M ;
SPEISER, P .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1979, 68 (12) :1521-1524
[7]   Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system [J].
Friese, A ;
Seiller, E ;
Quack, G ;
Lorenz, B ;
Kreuter, J .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2000, 49 (02) :103-109
[8]   Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles [J].
Gulyaev, AE ;
Gelperina, SE ;
Skidan, IN ;
Antropov, AS ;
Kivman, GY ;
Kreuter, J .
PHARMACEUTICAL RESEARCH, 1999, 16 (10) :1564-1569
[9]   Brain drug delivery of small molecules using immunoliposomes [J].
Huwyler, J ;
Wu, DF ;
Pardridge, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :14164-14169
[10]   Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier [J].
Kreuter, J ;
Shamenkov, D ;
Petrov, V ;
Ramge, P ;
Cychutek, K ;
Koch-Brandt, C ;
Alyautdin, R .
JOURNAL OF DRUG TARGETING, 2002, 10 (04) :317-325